【深度学习】SDXL tensorRT 推理,Stable Diffusion 转onnx,转TensorRT

文章目录

sdxl 转 diffusers

bash 复制代码
def convert_sdxl_to_diffusers(pretrained_ckpt_path, output_diffusers_path):
    import os
    os.environ["HF_ENDPOINT"] = "https://hf-mirror.com"  # 设置 HF 镜像源(国内用户使用)
    os.environ["CUDA_VISIBLE_DEVICES"] = "1"  # 设置 GPU 所使用的节点

    import torch
    from diffusers import StableDiffusionXLPipeline
    pipe = StableDiffusionXLPipeline.from_single_file(pretrained_ckpt_path, torch_dtype=torch.float16).to("cuda")
    pipe.save_pretrained(output_diffusers_path, variant="fp16")

转onnx

项目:https://huggingface.co/docs/diffusers/optimization/onnx

比如转sdxl模型:

bash 复制代码
optimum-cli export onnx --model stabilityai/stable-diffusion-xl-base-1.0 --task stable-diffusion-xl sd_xl_onnx/
bash 复制代码
optimum-cli export onnx --model frankjoshua/juggernautXL_version6Rundiffusion --task stable-diffusion-xl sdxl_onnx_juggernautXL_version6Rundiffusion

转TensorRT

stabilityai/stable-diffusion-xl-1.0-tensorrt

项目:https://huggingface.co/stabilityai/stable-diffusion-xl-1.0-tensorrt

TensorRT环境:

bash 复制代码
git clone https://github.com/rajeevsrao/TensorRT.git
cd TensorRT
git checkout release/9.2

stabilityai/stable-diffusion-xl-1.0-tensorrt项目

bash 复制代码
git lfs install 
git clone https://huggingface.co/stabilityai/stable-diffusion-xl-1.0-tensorrt
cd stable-diffusion-xl-1.0-tensorrt
git lfs pull
cd ..

进入容器:

bash 复制代码
docker run -it --gpus all -v $PWD:/workspace nvcr.io/nvidia/pytorch:23.11-py3 /bin/bash

安装环境:

bash 复制代码
cd demo/Diffusion
python3 -m pip install --upgrade pip
pip3 install -r requirements.txt
python3 -m pip install --pre --upgrade --extra-index-url https://pypi.nvidia.com tensorrt

执行SDXL推理:

bash 复制代码
python3 demo_txt2img_xl.py   "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k"   --build-static-batch   --use-cuda-graph   --num-warmup-runs 1   --width 1024   --height 1024   --denoising-steps 30  --version=xl-1.0   --onnx-dir /workspace/stable-diffusion-xl-1.0-tensorrt/sdxl-1.0-base   --onnx-refiner-dir /workspace/stable-diffusion-xl-1.0-tensorrt/sdxl-1.0-refiner
bash 复制代码
python3 demo_txt2img_xl.py   "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k"   --build-static-batch   --use-cuda-graph   --num-warmup-runs 1   --width 1024   --height 1024   --denoising-steps 30  --version=xl-1.0   --onnx-dir /workspace/sdxl_onnx_juggernautXL_version6Rundiffusion

这个py代码对终端解析有时候有点问题,直接在代码里改一下,直接指定一下:

3090速度:

SDXL-LCM

bash 复制代码
python3 demo_txt2img_xl.py \
  "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k" \
  --version=xl-1.0 \
  --onnx-dir /workspace/stable-diffusion-xl-1.0-tensorrt/lcm \
  --engine-dir /workspace/stable-diffusion-xl-1.0-tensorrt/lcm/engine-sdxl-lcm-nocfg \
  --scheduler LCM \
  --denoising-steps 4 \
  --guidance-scale 0.0 \
  --seed 42

SDXL-LCMLORA

bash 复制代码
python3 demo_txt2img_xl.py \
  "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k" \
  --version=xl-1.0 \
  --onnx-dir /workspace/stable-diffusion-xl-1.0-tensorrt/lcmlora \
  --engine-dir /workspace/stable-diffusion-xl-1.0-tensorrt/lcm/engine-sdxl-lcmlora-nocfg \
  --scheduler LCM \
  --lora-path latent-consistency/lcm-lora-sdxl \
  --lora-scale 1.0 \
  --denoising-steps 4 \
  --guidance-scale 0.0 \
  --seed 42

3090速度:

相关推荐
灰灰勇闯IT几秒前
神经网络的基石——深度解析 CANN ops-nn 算子库如何赋能昇腾 AI
人工智能·深度学习·神经网络
秋邱2 分钟前
深度解析CANN与AIGC的核心联系:算力底座赋能生成式AI规模化落地
人工智能·aigc
一枕眠秋雨>o<3 分钟前
数学的底座:ops-math如何为AI计算注入确定性
人工智能
Henry-SAP7 分钟前
SAP(ERP)主要生产计划(MPS)业务视角解析
人工智能
猫头虎10 分钟前
2026年AI产业13大趋势预测:Vibe Coding创作者经济元年到来,占冰强专家解读AIGC未来图景
人工智能·开源·prompt·aigc·ai编程·远程工作·agi
程序员清洒10 分钟前
CANN模型部署:从云端到端侧的全场景推理优化实战
大数据·人工智能
deephub10 分钟前
LLM推理时计算技术详解:四种提升大模型推理能力的方法
人工智能·深度学习·大语言模型·推理时计算
chian-ocean15 分钟前
智能多模态助手实战:基于 `ops-transformer` 与开源 LLM 构建 LLaVA 风格推理引擎
深度学习·开源·transformer
lili-felicity15 分钟前
CANN性能调优与实战问题排查:从基础优化到排障工具落地
开发语言·人工智能
User_芊芊君子18 分钟前
HCCL高性能通信库编程指南:构建多卡并行训练系统
人工智能·游戏·ai·agent·测评