机器学习-线性回归

1、线性回归解决的问题

线性回归是利用被称为线性回归方程的最小平方函数对一个或者多个自变量和因变量之间关系进行建模的一种回归分析。这种函数是一个或者多个被称为回归系数的模型参数的线性组合。

2、一元线性回归

一元线性回归分析:找到一条直线能够最大程度上拟合二维空间中出现的点。

3、多元线性回归

多元线性回归分析:如果自变量多于1个,那么就要求一个多元函数去拟合空间中的点。

要求使得所有点到这条线的误差最小。

误差推导

误差最小化

误差优化方法:

最小二乘法

梯度下降法

4、最小二乘法

5、梯度下降法


6、线性回归的应用

通过大量样本的试验学习到线性函数,然后根据新的样本外的特征数据,预测结果。

相关推荐
suke6 分钟前
一文秒懂AI核心:Agent、RAG、Function Call与MCP全解析
人工智能·程序员
oil欧哟10 分钟前
😎 MCP 从开发到发布全流程介绍,看完不踩坑!
人工智能·typescript·node.js
Code_流苏41 分钟前
AI知识补全(十四):零样本学习与少样本学习是什么?
人工智能·元学习·少样本学习·零样本学习·语义嵌入
Yvette-W44 分钟前
ChatGPT 迎来 4o模型:更强大的图像生成能力与潜在风险
人工智能·chatgpt
Shockang44 分钟前
机器学习的一百个概念(5)数据增强
人工智能·机器学习
洁洁!1 小时前
数据采集助力AI大模型训练
前端·人工智能·easyui
平平无奇科研小天才1 小时前
scGPT环境安装
人工智能
xcLeigh1 小时前
计算机视觉入门:从像素到理解的旅程
人工智能·python·opencv·计算机视觉
喾颛顼1 小时前
Mac下小智AI本地环境部署
人工智能·经验分享·macos