机器学习-线性回归

1、线性回归解决的问题

线性回归是利用被称为线性回归方程的最小平方函数对一个或者多个自变量和因变量之间关系进行建模的一种回归分析。这种函数是一个或者多个被称为回归系数的模型参数的线性组合。

2、一元线性回归

一元线性回归分析:找到一条直线能够最大程度上拟合二维空间中出现的点。

3、多元线性回归

多元线性回归分析:如果自变量多于1个,那么就要求一个多元函数去拟合空间中的点。

要求使得所有点到这条线的误差最小。

误差推导

误差最小化

误差优化方法:

最小二乘法

梯度下降法

4、最小二乘法

5、梯度下降法


6、线性回归的应用

通过大量样本的试验学习到线性函数,然后根据新的样本外的特征数据,预测结果。

相关推荐
SaleCoder1 小时前
用Python构建机器学习模型预测股票趋势:从数据到部署的实战指南
开发语言·python·机器学习·python股票预测·lstm股票模型·机器学习股票趋势
AI街潜水的八角1 小时前
图像修复:深度学习实现老照片划痕修复+老照片上色
人工智能·深度学习
HuggingFace3 小时前
Hugging Face 开源 HopeJR 机器臂!今天晚上直播带你深入技术核心
人工智能
SUPER52664 小时前
AI应用服务
人工智能
义薄云天us4 小时前
028_分布式部署架构
人工智能·分布式·架构·claude code
HuggingFace5 小时前
HF Papers 直播| AI for Science 专场
人工智能
机器视觉与AI5 小时前
半导体制造流程深度解析:外观缺陷检测的AI化路径与实践
人工智能·视觉检测·制造
批量小王子7 小时前
2025-07-15通过边缘线检测图像里的主体有没有出血
人工智能·opencv·计算机视觉
zyhomepage8 小时前
科技的成就(六十九)
开发语言·网络·人工智能·科技·内容运营
停走的风8 小时前
(李宏毅)deep learning(五)--learning rate
人工智能·深度学习·机器学习