为什么要用B+树

B+树的优势

支持范围查询:B+树在进行范围查询时,只需要从根节点一直遍历到叶子节点,因为数据都存储在叶子节点上,而且叶子节点之间有指针连接,可以很方便的进行范围查询

支持排序:B+树的叶子节点按照关键字顺序存储,可以快速支持排序操作,提供排序效率

存储更多的索引数据:因为它的非叶子节点只能存储索引关键字,不存储实际数据,因此可以存储更多的索引数据

在节点分裂和合并时,IO操作少:B+树的叶子节点的大小是固定的,而且节点的大小一般都会设置为一页的大小,这就使得节点分裂和合并时,IO操作很少,只需读取和写入一页

有利于磁盘预读:由于B+树的节点大小是固定的,因此可以很好的利用磁盘预读特性,一次行读取多个节点到内存中,可以减少IO操作次数,提高查询效率

有利于缓存:B+树的非叶子结点只存储执行子节点的指针,二步存储数据,这样可以使得缓存能搞容纳更多的索引数据,从而提供缓存的命中率,加快查询速度

为什么不使用B数和红黑树

B+树只有叶子节点存储数据,而非叶子节点不存储数据,可以存储更多的索引数据

节点大小固定,可以存储更多的索引数据

叶子节点之间是双向链表链接的,可以很方便的进行范围查询

叶子节点按照关键子顺序存储,更好的支持排序

所以,使用B+树实现索引有很多好处,比如我们前面提到的支持范围查询、有利于磁盘预读、有利于优化排序等等。而这些是红黑树和B树做不到的

相关推荐
ytttr87317 分钟前
隐马尔可夫模型(HMM)MATLAB实现范例
开发语言·算法·matlab
AlenTech1 小时前
160. 相交链表 - 力扣(LeetCode)
数据结构·leetcode·链表
点云SLAM1 小时前
凸优化(Convex Optimization)理论(1)
人工智能·算法·slam·数学原理·凸优化·数值优化理论·机器人应用
会周易的程序员1 小时前
多模态AI 基于工业级编译技术的PLC数据结构解析与映射工具
数据结构·c++·人工智能·单例模式·信息可视化·架构
jz_ddk2 小时前
[学习] 卫星导航的码相位与载波相位计算
学习·算法·gps·gnss·北斗
放荡不羁的野指针2 小时前
leetcode150题-动态规划
算法·动态规划
sin_hielo2 小时前
leetcode 1161(BFS)
数据结构·算法·leetcode
一起努力啊~2 小时前
算法刷题-二分查找
java·数据结构·算法
水月wwww2 小时前
【算法设计】动态规划
算法·动态规划
码农水水3 小时前
小红书Java面试被问:Online DDL的INSTANT、INPLACE、COPY算法差异
算法