Pytorch 对比TensorFlow 学习:Day 17-18: 循环神经网络(RNN)和LSTM

Day 17-18: 循环神经网络(RNN)和LSTM

在这两天的学习中,我专注于理解循环神经网络(RNN)和长短期记忆网络(LSTM)的基本概念,并学习了它们在处理序列数据时的应用。

1.RNN和LSTM基础:

RNN:了解了RNN是如何处理序列数据的,特别是它的循环结构可以用于处理时间序列或连续数据。

LSTM:学习了LSTM作为RNN的一种改进,它通过引入遗忘门、输入门和输出门解决了RNN的长期依赖问题。

2.实践应用:

使用这些概念来处理一个简单的序列数据任务,例如时间序列预测或文本数据处理。

构建一个包含RNN或LSTM层的神经网络模型。

3.PyTorch和TensorFlow实现:

在PyTorch中,使用nn.RNN或nn.LSTM来实现这些网络。

在TensorFlow中,使用Keras的SimpleRNN或LSTM层。

PyTorch代码示例:

import torch

import torch.nn as nn

import torch.optim as optim

class SimpleLSTM(nn.Module):#定义一个简单的LSTM模型

def init (self, input_size, hidden_size, num_classes):

super(SimpleLSTM, self).init ()

self.lstm = nn.LSTM(input_size, hidden_size, batch_first=True)

self.fc = nn.Linear(hidden_size, num_classes)

def forward(self, x):

初始隐藏状态和细胞状态

h0 = torch.zeros(1, x.size(0), hidden_size)

c0 = torch.zeros(1, x.size(0), hidden_size)

前向传播

out, _ = self.lstm(x, (h0, c0))

out = out[:, -1, :]

out = self.fc(out)

return out

#实例化模型、定义损失函数和优化器

input_size = 10 # 输入数据的特征维度

hidden_size = 20 # 隐藏层特征维度

num_classes = 2 # 输出类别数

model = SimpleLSTM(input_size, hidden_size, num_classes)

criterion = nn.CrossEntropyLoss()

optimizer = optim.Adam(model.parameters(), lr=0.001)

TensorFlow代码示例

import tensorflow as tf

from tensorflow.keras.models import Sequential

from tensorflow.keras.layers import LSTM, Dense

#定义一个简单的LSTM模型

model = Sequential([

LSTM(20, input_shape=(None, 10)), # 输入序列的长度任意,特征维度为10

Dense(2, activation='softmax') # 假设是二分类问题

])

#编译模型

model.compile(optimizer='adam',

loss='sparse_categorical_crossentropy',

metrics=['accuracy'])

#模型概要

model.summary()

相关推荐
Young_2022020224 分钟前
学习笔记——KMP
笔记·学习
行然梦实39 分钟前
学习日记_20241110_聚类方法(K-Means)
学习·kmeans·聚类
马船长1 小时前
制作图片木马
学习
秀儿还能再秀1 小时前
机器学习——简单线性回归、逻辑回归
笔记·python·学习·机器学习
WCF向光而行1 小时前
Getting accurate time estimates from your tea(从您的团队获得准确的时间估计)
笔记·学习
wang09071 小时前
工作和学习遇到的技术问题
学习
Li_0304063 小时前
Java第十四天(实训学习整理资料(十三)Java网络编程)
java·网络·笔记·学习·计算机网络
心怀梦想的咸鱼3 小时前
ue5 蓝图学习(一)结构体的使用
学习·ue5
kali-Myon3 小时前
ctfshow-web入门-SSTI(web361-web368)上
前端·python·学习·安全·web安全·web
龙中舞王3 小时前
Unity学习笔记(4):人物和基本组件
笔记·学习·unity