深度学习和机器学习中针对非时间序列的回归任务,有哪些改进角度?

深度学习和机器学习中针对非时间序列的回归任务,有哪些改进角度?

目录

引言

在非时间序列的回归任务中,深度学习和机器学习都是常用的方法。为了进一步提升模型的性能,可以通过改进数据处理、数据增强、特征选择、模型选择、模型正则化与泛化、优化器、学习率、超参数调优等方面,来提升模型的性能和可解释性。

1 数据预处理

提高数据质量和进行恰当的数据预处理对提升模型性能至关重要。

  1. 异常值处理:检测和处理异常值,防止对模型造成影响。
  2. 数据清洗:纠正在数据中的不一致性和错误。
  3. 处理不平衡数据:重采样策略,如SMOTE或随机过/欠采样。
  4. 缺失值处理:填补缺失值或使用模型处理缺失数据。
  5. 数据规范化:归一化或标准化数据。
  6. 数据离散化:对连续变量进行分桶操作。
  7. 特征编码:对类别型特征使用独热编码或标签编码。
  8. 多尺度特征:创建不同尺度的特征表示形式。
  9. 特征构造:创建新特征来增强现有数据集。
  10. 特征交互:考虑特征之间的交互作用。

2 数据集增强

通过生成合成数据或变形现有数据来拓展数据集,使模型能够从更多样的情况中学习。

  1. 数据扩张:人工生成新样本(基于已知样本特征的数据生成技术)。
  2. 过采样:复制少数类样本。
  3. 欠采样:减少多数类样本。
  4. 加权重采样:依据类的不平衡程度加权样本。
  5. 生成对抗网络(GAN):生成新的数据点增强数据集。
  6. 模拟数据生成:使用已知分布生成新数据点。
  7. 多样本合成:融合现有数据点生成新样本。
  8. 自动数据增强:使用算法来自动找到最优的数据增强方式。
  9. 交叉验证数据扩增:在交叉验证的每个循环中使用不同的数据增强。
  10. 引入外部数据集:结合其他资源扩展数据集。

3 特征选择

  1. 相关性分析:采用皮尔逊相关系数、斯皮尔曼等级相关系数等方法筛选与目标变量相关性高的特征。
  2. 主成分分析(PCA):减少维度,保留最有信息的特征分量。
  3. 特征重要性评分:基于树模型(如随机森林、XGBoost)评估特征重要性。
  4. 递归特征消除(RFE):递归减少特征集规模,找到最有影响的特征。
  5. 基于模型的选择:使用L1正则化(Lasso)自动进行特征选择。
  6. 群体方法(Ensemble methods):结合多种特征选择方法的结果。
  7. 互信息和最大信息系数(MIC):选取与目标变量互信息大的特征。
  8. 使用过滤方法:例如方差分析(ANOVA),通过统计测试进行特征选择。
  9. 时间序列特征工程:从日期中提取信息,如月份、星期等。
  10. 地理空间特征:如果数据包含地理信息,可以提取地理空间特征,如人口密度、流动性模式等。

4 模型选择

  1. 线性模型:逻辑回归、岭回归等,作为基线模型。
  2. 决策树:CART、ID3、C4.5作为非线性基准模型。
  3. 集成方法:随机森林、梯度提升机(GBM)、XGBoost、LightGBM、CatBoost等,提高模型的稳定性和准确性。
  4. 支持向量机(SVM):尝试不同的核函数。
  5. 神经网络:深度学习模型,能够捕获复杂非线性关系。
  6. K-最近邻(KNN):调整邻居数量。
  7. 朴素贝叶斯:对条件独立性假设下的快速模型。
  8. 实例学习方法:基于实例的学习可以用于捕捉异常点或进行小样本学习。
  9. 混合模型或堆叠(Stacking):结合多个不同的模型的预测以提高准确率。

5 模型正则化与泛化

正则化技术可以减少过拟合,提升模型的泛化能力。

  1. L1/L2正则化:加入惩罚项限制模型复杂度。
  2. 早停法(Early Stopping):防止训练过度。
  3. 丢弃法(Dropout):神经网络中随机丢弃节点以增加鲁棒性。
  4. 集成学习:多模型集成平均预测。
  5. 交叉验证:更可靠地评估模型表现。
  6. 堆叠通用化(Stacking Generalization):模型的堆叠组合。
  7. 引导聚合(Bagging):减少方差,如随机森林。
  8. 梯度提升:如GBM、XGBoost,增加模型鲁棒性。
  9. 噪声鲁棒性:对输入添加噪声以提高鲁棒性。
  10. 模型蒸馏(Knowledge Distillation):从复杂模型到简单模型的知识转移。

6 优化器

pytorch手册:https://pytorch.org/docs/stable/optim.html

  1. 梯度下降(GD):基础的优化算法。
  2. 随机梯度下降(SGD):每次更新只使用一个样本,速度快。
  3. 批量梯度下降(BGD):每次更新使用全部样本,稳定性好。
  4. 动量(Momentum):加速SGD在相关方向上前进,抑制震荡。
  5. Adagrad:自适应学习率优化算法。
  6. RMSprop:解决Adagrad学习率急剧下降问题。
  7. Adam:结合了RMSprop和Momentum的优点。
  8. AdaDelta:改进的Adagrad以防止学习率过早下降。
  9. Nesterov 加速梯度(NAG):提前调整梯度方向以增加速度。
  10. AdamW:在Adam的基础上加入权重衰减,提高模型泛化能力。

7 学习率

学习率的调整对模型训练效果影响巨大,以下是一些调整学习率的方法:

  1. 固定学习率:最基本的策略,全程使用固定学习率。
  2. 按时间衰减:随着迭代次数增加,学习率逐渐减小。
  3. 步长衰减:每隔一定的epoch,学习率衰减一次。
  4. 指数衰减:学习率按指数函数衰减。
  5. 自适应学习率:根据模型在训练集上的表现来动态调整学习率。
  6. 余弦退火(Cosine Annealing):周期性调整学习率的一种策略。
  7. 线性预热(Warm-up):先小学习率预热,逐渐增加到正常值。
  8. 周期性学习率:学习率在较高值和较低值之间周期性变动。
  9. 学习率范围测试:快速地迭代多个学习率以找到最好的范围。
  10. 使用学习率查找算法:例如学习率查找器,快速找到适合当前数据集的学习率。

8 超参数调优

通过调整模型超参数来优化模型表现。

  1. 网格搜索:系统性地遍历多种超参数的组合。
  2. 随机搜索:在超参数空间中随机搜索。
  3. 贝叶斯优化:基于贝叶斯模型的优化方法。
  4. 基于遗传算法的优化:模拟自然选择过程来选择超参数。
  5. 模拟退火:启发式搜索技术,优化复杂空间中的超参数选择。
  6. 超参数空间约减:通过预先分析减少搜索空间的范围。
  7. 自动化机器学习(AutoML):自动化超参数的选择和模型的训练。
  8. 超参数重要性分析:分析各个超参数对模型表现的影响大小。
  9. 进化算法:利用进化策略寻找最佳超参数。
  10. 零成本代理指标:使用低成本指标来预测较高成本指标的表现。

9 性能评估与模型解释

了解模型在哪些方面表现良好或不足,可以进一步改进模型。

  1. 混淆矩阵分析:查看模型在不同类别的预测性能。
  2. ROC曲线与AUC:评估模型的区分能力。
  3. 精度-召回曲线:了解精度与召回率的权衡关系。
  4. Brier分数:评估概率预测的准确性。
  5. 查看模型权重:分析特征权重对结果的影响。
  6. SHAP值:解释模型的预测以关联特征的重要性。
  7. 部分依赖图(Partial Dependence Plots):可视化特征影响。
  8. 局部可解释模型的敏感性分析(LIME):解释单个预测结果。
  9. 累积增益图和提升图:分析营销策略效果。
  10. 泛化误差分析:分析模型在新数据上的预测性能。
相关推荐
喵~来学编程啦7 分钟前
【论文精读】LPT: Long-tailed prompt tuning for image classification
人工智能·深度学习·机器学习·计算机视觉·论文笔记
几两春秋梦_42 分钟前
符号回归概念
人工智能·数据挖掘·回归
Chef_Chen2 小时前
从0开始学习机器学习--Day13--神经网络如何处理复杂非线性函数
神经网络·学习·机器学习
Troc_wangpeng2 小时前
R language 关于二维平面直角坐标系的制作
开发语言·机器学习
-Nemophilist-2 小时前
机器学习与深度学习-1-线性回归从零开始实现
深度学习·机器学习·线性回归
艾派森3 小时前
大数据分析案例-基于随机森林算法的智能手机价格预测模型
人工智能·python·随机森林·机器学习·数据挖掘
4 小时前
开源竞争-数据驱动成长-11/05-大专生的思考
人工智能·笔记·学习·算法·机器学习
忘梓.4 小时前
划界与分类的艺术:支持向量机(SVM)的深度解析
机器学习·支持向量机·分类
Chef_Chen4 小时前
从0开始机器学习--Day17--神经网络反向传播作业
python·神经网络·机器学习
MarkHD5 小时前
第十一天 线性代数基础
线性代数·决策树·机器学习