机械臂雅可比矩阵的矢量积理解和matlab实现

雅可比矩阵的第Ji列:

关于一些基本概念可以参考博客,部分细节如下:

每个移动关节,Ji可以这样计算:

每个旋转关节,Ji这样计算:

有时候要求按照末端执行器坐标系{n}来执行一些位移旋转之类的操作,在末端执行器坐标系下的雅可比矩阵可以这样计算:

SDH代码程序参考博客,如下:

bash 复制代码
function [ J ] = Jacob_cross_SDH( q )
%JACOB_CROSS_SDH 函数摘要
%   输入q0为逼近角,单位为弧度,矩阵大小1*6;
%   输出J为速度雅各比矩阵,矩阵大小6*6;
%   说明:利用向量积的方法求解系统的雅各比矩阵,方法1和方法2任选一种
%   说明:此求解方法基于SDH参数建模,若MDH方法建模,需进行一定的下标改动

d=[105.03,0,0,75.66,80.09,44.36];
a=[0,-174.42,-174.42,0,0,0];
alp=[pi/2,0,0,pi/2,-pi/2,0];
offset=[0,-pi/2,0,-pi/2,0,0];
thd=q+offset;

% 求各个关节间的变换矩阵
T0=trotz(0)*transl(0,0,0)*trotx(0)*transl(0,0,0);
T1=trotz(thd(1))*transl(0,0,d(1))*trotx(alp(1))*transl(a(1),0,0);
T2=trotz(thd(2))*transl(0,0,d(2))*trotx(alp(2))*transl(a(2),0,0);
T3=trotz(thd(3))*transl(0,0,d(3))*trotx(alp(3))*transl(a(3),0,0);
T4=trotz(thd(4))*transl(0,0,d(4))*trotx(alp(4))*transl(a(4),0,0);
T5=trotz(thd(5))*transl(0,0,d(5))*trotx(alp(5))*transl(a(5),0,0);
T6=trotz(thd(6))*transl(0,0,d(6))*trotx(alp(6))*transl(a(6),0,0);

% 求各个关节相对于惯性坐标系的变换矩阵
T00 = T0;
T01 = T1;
T02 = T1*T2;
T03 = T1*T2*T3;
T04 = T1*T2*T3*T4;
T05 = T1*T2*T3*T4*T5;
T06 = T1*T2*T3*T4*T5*T6;

% 求各个关节相对于末端坐标系的变换矩阵
T06 = T1*T2*T3*T4*T5*T6;
T16 = T2*T3*T4*T5*T6;
T26 = T3*T4*T5*T6;
T36 = T4*T5*T6;
T46 = T5*T6;
T56 = T6;

% 提取各变换矩阵的旋转矩阵
R00 = t2r(T00);
R01 = t2r(T01);
R02 = t2r(T02);
R03 = t2r(T03);
R04 = t2r(T04);
R05 = t2r(T05);
R06 = t2r(T06);

% 取旋转矩阵第3列,即Z轴方向分量
Z0 = R00(: , 3);
Z1 = R01(: , 3);
Z2 = R02(: , 3);
Z3 = R03(: , 3);
Z4 = R04(: , 3);
Z5 = R05(: , 3);
Z6 = R06(: , 3);

%% Method.1
% 求末端关节坐标系相对于前面各个坐标系的位置,即齐次变换矩阵的第四列
% pi6为坐标系i和末端坐标系的相对位置在坐标系i下的表示
P06 = T06(1:3, 4);
P16 = T16(1:3, 4);
P26 = T26(1:3, 4);
P36 = T36(1:3, 4);
P46 = T46(1:3, 4);
P56 = T56(1:3, 4);
P66 = [0; 0; 0];

% 使用向量积求出雅可比矩阵
% R0i为坐标系0到坐标系i的旋转矩阵
% R0i*Pi6指坐标系i和末端坐标系的相对位置在0坐标系下的表示
J1 = [cross(Z0, R00*P06); Z0];
J2 = [cross(Z1, R01*P16); Z1];
J3 = [cross(Z2, R02*P26); Z2];
J4 = [cross(Z3, R03*P36); Z3];
J5 = [cross(Z4, R04*P46); Z4];
J6 = [cross(Z5, R05*P56); Z5];

%% Method.2

% % pi为坐标系i与世界坐标系0的相对位置
% p0=transl(T00);
% p1=transl(T01);
% p2=transl(T02);
% p3=transl(T03);
% p4=transl(T04);
% p5=transl(T05);
% p6=transl(T06);
% 
% % p6-pi为i坐标系指向末端坐标系的向量
% % p6-pi即为末端坐标系与i坐标系相对位置在世界坐标系中的表示
% % Ji=[Jv;Jw]    对应六自由度的速度分量和旋转分量
% J1 = [cross(Z0, p6-p0); Z0];
% J2 = [cross(Z1, p6-p1); Z1];
% J3 = [cross(Z2, p6-p2); Z2];
% J4 = [cross(Z3, p6-p3); Z3];
% J5 = [cross(Z4, p6-p4); Z4];
% J6 = [cross(Z5, p6-p5); Z5];


J = [J1, J2, J3, J4, J5, J6];

end
相关推荐
点灯小铭12 小时前
基于MATLAB的车牌识别系统
开发语言·单片机·数码相机·matlab·毕业设计·课程设计
茜茜西西CeCe12 小时前
数字图像处理-图像的基本运算
图像处理·人工智能·计算机视觉·matlab·图像的基本运算
索迪迈科技13 小时前
算法题(203):矩阵最小路径和
线性代数·算法·矩阵
lingchen19061 天前
MATLAB的数值计算(三)曲线拟合与插值
开发语言·matlab
Hi202402171 天前
使用 Apollo TransformWrapper 生成相机到各坐标系的变换矩阵
数码相机·线性代数·矩阵·自动驾驶·apollo
星马梦缘1 天前
Matlab机器人工具箱使用5 轨迹规划
matlab·机器人·轨迹规划·空间插值
塔中妖1 天前
【华为OD】最大子矩阵和
算法·华为od·矩阵
机器学习之心1 天前
MATLAB基于GM(灰色模型)与LSTM(长短期记忆网络)的组合预测方法
matlab·lstm
君名余曰正则2 天前
机器学习实操项目01——Numpy入门(基本操作、数组形状操作、复制与试图、多种索引技巧、线性代数)
线性代数·机器学习·numpy
点云SLAM2 天前
四元数 (Quaternion)与李群SE(3)知识点(1)
线性代数·slam·四元数·旋转矩阵·位姿表示·李群se(3)·四元数插值