数据分析实战:城市房价分析

流程图:

1.读数据表

首先,读取数据集。

CRIM ZN INDUS CHAS NOX RM AGE DIS RAD TAX PTRATIO B LSTAT target
0.00632 18 2.31 0 0.538 6.575 65.2 4.09 1 296 15.3 396.9 4.98 24
0.02731 0 7.07 0 0.469 6.421 78.9 4.9671 2 242 17.8 396.9 9.14 21.6
0.02729 0 7.07 0 0.469 7.185 61.1 4.9671 2 242 17.8 392.83 4.03 34.7
0.03237 0 2.18 0 0.458 6.998 45.8 6.0622 3 222 18.7 394.63 2.94 33.4
0.06905 0 2.18 0 0.458 7.147 54.2 6.0622 3 222 18.7 396.9 5.33 36.2

读取数据集之后,通过了解各个字段的具体含义,详细含义可见此处。可以初步将房价以外的13个字段大致分为四类用于探索其与房价之间的关系,四类分别为:房屋房间数(包含字段RM)、居民质量(包含字段LSTAT,B,CRIM以及PTRATIO)、周边交通情况(包含字段DIS,RAD)、以及环境问题(包含字段CHAS)。接下来的可视化分析将基于以上四大类开展,逐一分析其分布情况与该类字段与波士顿地区房价的关系。

2.字段基本统计信息

查看数据集中各个字段的样本数、均值、标准差、最小值、四分位数等基本信息。

CRIM ZN INDUS CHAS NOX RM AGE DIS RAD TAX PTRATIO B LSTAT target
样本数 506 506 506 506 506 506 506 506 506 506 506 506 506 506
均值 3.6135235573 11.3636363636 11.1367786561 0.0691699605 0.5546950593 6.2846343874 68.5749011858 3.7950426877 9.5494071146 408.2371541502 18.4555335968 356.6740316206 12.6530632411 22.5328063241
标准差 8.6015451053 23.3224529945 6.8603529409 0.2539940413 0.1158776757 0.7026171434 28.1488614069 2.1057101266 8.7072593842 168.537116055 2.1649455237 91.2948643842 7.1410615113 9.1971040874
最小值 0.00632 0 0.46 0 0.385 3.561 2.9 1.1296 1 187 12.6 0.32 1.73 5
下四分位数 0.082045 0 5.19 0 0.449 5.8855 45.025 2.100175 4 279 17.4 375.3775 6.95 17.025
中位数 0.25651 0 9.69 0 0.538 6.2085 77.5 3.20745 5 330 19.05 391.44 11.36 21.2
上四分位数 3.6770825 12.5 18.1 0 0.624 6.6235 94.075 5.188425 24 666 20.2 396.225 16.955 25
最大值 88.9762 100 27.74 1 0.871 8.78 100 12.1265 24 711 22 396.9 37.97 50

根据数据字段的基本统计信息,可以得出此数据集中所有的字段包含506个样本数,因此数据集不存在缺失值的情况。通过结合均值、标准差、最小值和下四分位数可以发现字段AGE最小值在2.9,但是均值达到68.6左右,因此可以后续用箱线图探究此字段中数值的合理性。同样,通过查看数据基本信息可以初步判断出其他字段的数据较为合理。

判断完字段的合理性之后对数据大致的波动性以及离散程度进行预估,其中字段CRIM,ZN,RAD,DIS的标准差高于或接近均值,可以看出以上字段的波动性较大,初步判断波士顿地区存在房源质量差距较大的现象,预测会有一些较为优质房源以及一些质量非常低的房源。因此,在后续进行可视化分析的时候着重定位优质房源。

3.平均房价直方图

读取数据集、查看各个字段的基本信息以及验证各个字段的数据合理性之后将具体分析该案例。由于此案例针对波士顿的房价,因此可以将重心定位在探究波士顿房价的影响因素,重点分析字段target

首先,通过绘制平均房价的直方图探究波士顿地区的房价的基本情况。

从该直方图中可以得知在波士顿地区18500美元的房价最多,集中分布在14000美元到23000美元,存在少量高房价房源。接下来可以通过绘制箱线图具体查看较高房价房源的情况。

4.平均房价箱线图

通过直方图分析完波士顿地区平均房价之后,接着通过箱线图查看字段target的最大值、最小值、四分位数以及异常点,目的是初步了解波士顿地区房价的具体分布情况并查看异常点的值。

5.自用房屋比例的箱线图

由于数据字段基本信息统计中字段AGE的数值相对较为异常,因此可以通过箱线图进一步验证该字段数据的合理性。

8 平均房间数与房价的散点图

想要探究影响这些波士顿房价异常高的原因,先进行假设房价异常高的直接影响因素是房间数较多,占地面积较大。为了证明这一假设的准确性,将绘制数据集中字段RMtarget的散点图探究平均房间数与房价之间的相关性。

已知在波士顿地区,距离市中心的远近程度在很大程度上并不影响房屋的均价之后,将探究距离辐射公路是否影响房屋的均价。因此,通过绘制距离辐射公路与房价的散点图进行查看。

相关推荐
doubt。33 分钟前
【BUUCTF】[RCTF2015]EasySQL1
网络·数据库·笔记·mysql·安全·web安全
通信.萌新41 分钟前
OpenCV边沿检测(Python版)
人工智能·python·opencv
ARM+FPGA+AI工业主板定制专家43 分钟前
基于RK3576/RK3588+FPGA+AI深度学习的轨道异物检测技术研究
人工智能·深度学习
赛丽曼1 小时前
机器学习-分类算法评估标准
人工智能·机器学习·分类
伟贤AI之路1 小时前
从音频到 PDF:AI 全流程打造完美英文绘本教案
人工智能
weixin_307779131 小时前
分析一个深度学习项目并设计算法和用PyTorch实现的方法和步骤
人工智能·pytorch·python
helianying551 小时前
云原生架构下的AI智能编排:ScriptEcho赋能前端开发
前端·人工智能·云原生·架构
Maybe_ch1 小时前
群晖部署-Calibreweb
数据库·群晖·nas
小辛学西嘎嘎1 小时前
MVCC在MySQL中实现无锁的原理
数据库·mysql
池央1 小时前
StyleGAN - 基于样式的生成对抗网络
人工智能·神经网络·生成对抗网络