强化学习 - Q-learning(Q学习)

什么是机器学习

强化学习中的 Q-learning (Q学习)是一种用于学习在未知环境中做出决策的方法。它是基于值函数的方法,通过学习一个值函数 Q,该函数表示在给定状态和动作下,期望的累积奖励。

以下是一个简单的 Q-learning 的实现教程,使用 Python 进行演示。这里我们考虑一个简单的驾驶代理程序在一个格子世界中学习如何最优地选择动作以达到目标。

python 复制代码
import numpy as np

# 定义格子世界的大小
num_states = 6
num_actions = 4  # 上、下、左、右

# 初始化 Q 表
Q = np.zeros((num_states, num_actions))

# 定义参数
alpha = 0.1  # 学习率
gamma = 0.9  # 折扣因子
epsilon = 0.1  # 探索概率

# 定义转移矩阵 R
R = np.array([
    [-1, -1, -1, -1, 0, -1],
    [-1, -1, -1, 0, -1, 100],
    [-1, -1, -1, 0, -1, -1],
    [-1, 0, 0, -1, 0, -1],
    [0, -1, -1, 0, -1, 100],
    [-1, 0, -1, -1, 0, 100]
])

# Q-learning 算法
def q_learning(state, alpha, gamma, epsilon, num_episodes):
    for episode in range(num_episodes):
        current_state = state
        while current_state != 5:  # 目标状态为5
            # epsilon-greedy策略选择动作
            if np.random.rand() < epsilon:
                action = np.random.choice(range(num_actions))
            else:
                action = np.argmax(Q[current_state, :])

            # 执行动作,得到下一个状态
            next_state = action

            # 更新 Q 值
            Q[current_state, action] = Q[current_state, action] + alpha * \
                (R[current_state, action] + gamma * np.max(Q[next_state, :]) - Q[current_state, action])

            # 进入下一个状态
            current_state = next_state

# 运行 Q-learning 算法
q_learning(state=0, alpha=alpha, gamma=gamma, epsilon=epsilon, num_episodes=1000)

# 打印学得的 Q 表
print("Learned Q-table:")
print(Q)

在这个例子中,我们定义了一个简单的格子世界,其中代理程序在不同的状态之间移动,选择上、下、左、右四个动作。代理程序通过 Q-learning 学习在每个状态下选择每个动作的 Q 值。在每个训练 episode 中,代理程序根据 epsilon-greedy 策略选择动作,执行动作后更新 Q 值

请注意,这只是一个简化的 Q-learning 示例,实际应用中可能涉及到更复杂的环境和状态。调整参数,如学习率alpha)、折扣因子gamma)、探索概率epsilon),是实现良好性能的关键。

相关推荐
A懿轩A36 分钟前
C/C++ 数据结构与算法【数组】 数组详细解析【日常学习,考研必备】带图+详细代码
c语言·数据结构·c++·学习·考研·算法·数组
古希腊掌管学习的神37 分钟前
[搜广推]王树森推荐系统——矩阵补充&最近邻查找
python·算法·机器学习·矩阵
martian66543 分钟前
【人工智能数学基础篇】——深入详解多变量微积分:在机器学习模型中优化损失函数时应用
人工智能·机器学习·微积分·数学基础
人机与认知实验室2 小时前
人、机、环境中各有其神经网络系统
人工智能·深度学习·神经网络·机器学习
黑色叉腰丶大魔王2 小时前
基于 MATLAB 的图像增强技术分享
图像处理·人工智能·计算机视觉
迅易科技5 小时前
借助腾讯云质检平台的新范式,做工业制造企业质检的“AI慧眼”
人工智能·视觉检测·制造
古希腊掌管学习的神6 小时前
[机器学习]XGBoost(3)——确定树的结构
人工智能·机器学习
ZHOU_WUYI6 小时前
4.metagpt中的软件公司智能体 (ProjectManager 角色)
人工智能·metagpt
靴子学长7 小时前
基于字节大模型的论文翻译(含免费源码)
人工智能·深度学习·nlp
AI_NEW_COME8 小时前
知识库管理系统可扩展性深度测评
人工智能