强化学习 - Q-learning(Q学习)

什么是机器学习

强化学习中的 Q-learning (Q学习)是一种用于学习在未知环境中做出决策的方法。它是基于值函数的方法,通过学习一个值函数 Q,该函数表示在给定状态和动作下,期望的累积奖励。

以下是一个简单的 Q-learning 的实现教程,使用 Python 进行演示。这里我们考虑一个简单的驾驶代理程序在一个格子世界中学习如何最优地选择动作以达到目标。

python 复制代码
import numpy as np

# 定义格子世界的大小
num_states = 6
num_actions = 4  # 上、下、左、右

# 初始化 Q 表
Q = np.zeros((num_states, num_actions))

# 定义参数
alpha = 0.1  # 学习率
gamma = 0.9  # 折扣因子
epsilon = 0.1  # 探索概率

# 定义转移矩阵 R
R = np.array([
    [-1, -1, -1, -1, 0, -1],
    [-1, -1, -1, 0, -1, 100],
    [-1, -1, -1, 0, -1, -1],
    [-1, 0, 0, -1, 0, -1],
    [0, -1, -1, 0, -1, 100],
    [-1, 0, -1, -1, 0, 100]
])

# Q-learning 算法
def q_learning(state, alpha, gamma, epsilon, num_episodes):
    for episode in range(num_episodes):
        current_state = state
        while current_state != 5:  # 目标状态为5
            # epsilon-greedy策略选择动作
            if np.random.rand() < epsilon:
                action = np.random.choice(range(num_actions))
            else:
                action = np.argmax(Q[current_state, :])

            # 执行动作,得到下一个状态
            next_state = action

            # 更新 Q 值
            Q[current_state, action] = Q[current_state, action] + alpha * \
                (R[current_state, action] + gamma * np.max(Q[next_state, :]) - Q[current_state, action])

            # 进入下一个状态
            current_state = next_state

# 运行 Q-learning 算法
q_learning(state=0, alpha=alpha, gamma=gamma, epsilon=epsilon, num_episodes=1000)

# 打印学得的 Q 表
print("Learned Q-table:")
print(Q)

在这个例子中,我们定义了一个简单的格子世界,其中代理程序在不同的状态之间移动,选择上、下、左、右四个动作。代理程序通过 Q-learning 学习在每个状态下选择每个动作的 Q 值。在每个训练 episode 中,代理程序根据 epsilon-greedy 策略选择动作,执行动作后更新 Q 值

请注意,这只是一个简化的 Q-learning 示例,实际应用中可能涉及到更复杂的环境和状态。调整参数,如学习率alpha)、折扣因子gamma)、探索概率epsilon),是实现良好性能的关键。

相关推荐
静心问道4 分钟前
Idefics3:构建和更好地理解视觉-语言模型:洞察与未来方向
人工智能·多模态·ai技术应用
sheep88886 分钟前
AI与区块链Web3技术融合:重塑数字经济的未来格局
人工智能·区块链
奋进的孤狼13 分钟前
【Spring AI】阿里云DashScope灵积模型
人工智能·spring·阿里云·ai·云计算
AIGC_北苏18 分钟前
让UV管理一切!!!
linux·人工智能·uv
好学且牛逼的马1 小时前
学习随笔录
学习
吕永强2 小时前
人工智能与环境:守护地球的智能防线
人工智能·科普
我爱学嵌入式2 小时前
C语言第 9 天学习笔记:数组(二维数组与字符数组)
c语言·笔记·学习
兮℡檬,2 小时前
房价预测|Pytorch
人工智能·pytorch·python
青春不败 177-3266-05203 小时前
MATLAB近红外光谱分析技术及实践技术应用
随机森林·机器学习·支持向量机·matlab·卷积神经网络·遗传算法·近红外光谱
im_AMBER6 小时前
学习日志19 python
python·学习