强化学习 - Q-learning(Q学习)

什么是机器学习

强化学习中的 Q-learning (Q学习)是一种用于学习在未知环境中做出决策的方法。它是基于值函数的方法,通过学习一个值函数 Q,该函数表示在给定状态和动作下,期望的累积奖励。

以下是一个简单的 Q-learning 的实现教程,使用 Python 进行演示。这里我们考虑一个简单的驾驶代理程序在一个格子世界中学习如何最优地选择动作以达到目标。

python 复制代码
import numpy as np

# 定义格子世界的大小
num_states = 6
num_actions = 4  # 上、下、左、右

# 初始化 Q 表
Q = np.zeros((num_states, num_actions))

# 定义参数
alpha = 0.1  # 学习率
gamma = 0.9  # 折扣因子
epsilon = 0.1  # 探索概率

# 定义转移矩阵 R
R = np.array([
    [-1, -1, -1, -1, 0, -1],
    [-1, -1, -1, 0, -1, 100],
    [-1, -1, -1, 0, -1, -1],
    [-1, 0, 0, -1, 0, -1],
    [0, -1, -1, 0, -1, 100],
    [-1, 0, -1, -1, 0, 100]
])

# Q-learning 算法
def q_learning(state, alpha, gamma, epsilon, num_episodes):
    for episode in range(num_episodes):
        current_state = state
        while current_state != 5:  # 目标状态为5
            # epsilon-greedy策略选择动作
            if np.random.rand() < epsilon:
                action = np.random.choice(range(num_actions))
            else:
                action = np.argmax(Q[current_state, :])

            # 执行动作,得到下一个状态
            next_state = action

            # 更新 Q 值
            Q[current_state, action] = Q[current_state, action] + alpha * \
                (R[current_state, action] + gamma * np.max(Q[next_state, :]) - Q[current_state, action])

            # 进入下一个状态
            current_state = next_state

# 运行 Q-learning 算法
q_learning(state=0, alpha=alpha, gamma=gamma, epsilon=epsilon, num_episodes=1000)

# 打印学得的 Q 表
print("Learned Q-table:")
print(Q)

在这个例子中,我们定义了一个简单的格子世界,其中代理程序在不同的状态之间移动,选择上、下、左、右四个动作。代理程序通过 Q-learning 学习在每个状态下选择每个动作的 Q 值。在每个训练 episode 中,代理程序根据 epsilon-greedy 策略选择动作,执行动作后更新 Q 值

请注意,这只是一个简化的 Q-learning 示例,实际应用中可能涉及到更复杂的环境和状态。调整参数,如学习率alpha)、折扣因子gamma)、探索概率epsilon),是实现良好性能的关键。

相关推荐
金融小师妹23 分钟前
应用BERT-GCN跨模态情绪分析:贸易缓和与金价波动的AI归因
大数据·人工智能·算法
武子康26 分钟前
大语言模型 10 - 从0开始训练GPT 0.25B参数量 补充知识之模型架构 MoE、ReLU、FFN、MixFFN
大数据·人工智能·gpt·ai·语言模型·自然语言处理
广州智造29 分钟前
OptiStruct实例:3D实体转子分析
数据库·人工智能·算法·机器学习·数学建模·3d·性能优化
jndingxin2 小时前
OpenCV CUDA模块中矩阵操作------降维操作
人工智能·opencv
MARS_AI_2 小时前
智能呼叫系统中的NLP意图理解:核心技术解析与实战
人工智能·自然语言处理·nlp·交互·信息与通信
Trent19852 小时前
影楼精修-肤色统一算法解析
图像处理·人工智能·算法·计算机视觉
小Tomkk3 小时前
2025年PMP 学习十五 第10章 项目资源管理
学习·pmp·项目pmp
oceanweave4 小时前
【K8S学习之生命周期钩子】详细了解 postStart 和 preStop 生命周期钩子
学习·kubernetes
Blossom.1185 小时前
使用Python实现简单的人工智能聊天机器人
开发语言·人工智能·python·低代码·数据挖掘·机器人·云计算