VideoGPT:使用VQ-VAE和Transformers的视频生成

1 Title

VideoGPT: Video Generation using VQ-VAE and Transformers(Wilson Yan,Yunzhi Zhang ,Pieter Abbeel,Aravind Srinivas)

2 Conlusion

This paper present VideoGPT: a conceptually simple architecture for scaling likelihood based generative modeling to natural videos. VideoGPT uses VQ-VAE that learns downsampled discrete latent representations of a raw video by employing 3D convolutions and axial self-attention. A simple GPT-like architecture is then used to autoregressively model the discrete latents using spatio-temporal position encodings.

3 Good Sentences

1、High-fidelity natural videos is one notable modality that has not seen the same level of progress in generative modeling as compared to images, audio, and text. This is reasonable since the complexity of natural videos requires modeling correlations across both space and time with much higher input dimensions. Video modeling is therefore a natural next challenge for current deep generative models. (The significance of this work)

2、The above line of reasoning leads us to our proposed model:VideoGPT, a simple video generation architecture that is a minimal adaptation of VQ-VAE and GPT architectures for videos.(The reason for choosing VideoGPT)

3、Although the VQ-VAE is trained unconditionally, we can generate conditional samples by training a conditional prior. We use two types of conditioning:Cross Attention and Conditional Norms.(How to transform unconditional to conditional learning)


背景知识

VQ-VAE

VQ-VAE能利用codebook机制把图像编码成离散向量

Method

整个训练过程如图所示,分为两个部分,训练VQ-VAE(左)和训练隐空间中的自回归Transformer(右)

第一阶段与原始VQ-VAE训练过程类似。

第二阶段,VQ-VAE将视频数据编码为隐序列作为先验模型的训练数据。首先从先验中采样隐序列,然后使用VQ-VAE将隐序列解码为视频样本。(Transformer的作用是引入条件,这里可以使用交叉注意力或者Conditional Norms:)

相关推荐
CHEN5_0219 小时前
【leetcode100】和为k的子数组(两种解法)
java·数据结构·算法
Codeking__19 小时前
DFS算法原理及其模板
算法·深度优先·图论
Victory_orsh19 小时前
“自然搞懂”深度学习系列(基于Pytorch架构)——01初入茅庐
人工智能·pytorch·python·深度学习·算法·机器学习
88号技师19 小时前
2025年8月SCI-汉尼拔·巴卡优化算法Hannibal Barca optimizer-附Matlab免费代码
开发语言·人工智能·算法·数学建模·matlab·优化算法
龙腾AI白云19 小时前
大模型-高效优化技术全景解析:微调 量化 剪枝 梯度裁剪与蒸馏 上
算法
地平线开发者20 小时前
新版 perf 文件解读与性能分析
算法·自动驾驶
lingran__20 小时前
算法沉淀第五天(Registration System 和 Obsession with Robots)
c++·算法
chrispang20 小时前
浅谈 Tarjan 算法
算法
莱茶荼菜20 小时前
一个坐标转换
c++·算法
西阳未落20 小时前
多模态实体识别:跨越模态鸿沟的智能技术
算法