C#,计算几何,随机点集之三角剖分的德劳内(Delaunay)算法的源代码

一、三角剖分Delaunay算法简介

点集的三角剖分(Triangulation),对数值分析(比如有限元分析)以及图形学来说,都是极为重要的一项预处理技术。尤其是Delaunay三角剖分,由于其独特性,关于点集的很多种几何图都和Delaunay三角剖分相关,如Voronoi图,EMST树,Gabriel图等。Delaunay三角剖分有最大化最小角,"最接近于规则化的 "的三角网和唯一性(任意四点不能共圆)两个特点。

EMST(Euclidean minimum spanning tree)

Delaunay 三角剖分广泛应用于许多不同应用程序中的科学计算。虽然有大量的计算三角剖分的算法,但 Delaunay 三角剖分以其实用的几何属性广受欢迎。

Gabriel Graph

基本属性是 Delaunay 规则。如果是二维三角剖分,通常将其称为空外接圆规则。对于一组二维点而言,这些点的 Delaunay 三角剖分可确保与每个三角形相关的外接圆的内部都不包含其他点。这种三角剖分便是 Delaunay 三角剖分。

Delaunay 三角剖分堪称"外形整齐",原因在于为满足空外接圆属性,优先选择带有较大内角的三角形,而不是带有较小内角的三角形。非 Delaunay 三角剖分中的三角形在顶点 V2 和 V4 处呈锐角。如果将 {V2, V4} 边替换为连接 V1 和 V3 的边,会实现最小角的最大化并且使得该三角剖分变为 Delaunay 三角剖分。另外,Delaunay 三角剖分将最近邻点的点连接在一起。这两个特征(外形整齐和最近邻点关系)在实践中具有重要的作用,有助于促进在散点数据插值中使用 Delaunay 三角剖分。

虽然 Delaunay 属性定义明确,但存在退化点集时三角剖分的拓扑并不唯一。在二维中,4 个或更多特征点位于同一圆中时会引发退化。例如,正方形的顶点不具有唯一的 Delaunay 三角剖分。

二、三角剖分Delaunay算法的源代码

cs 复制代码
namespace Legalsoft.Truffer.Algorithm
{
    public struct Vertex
    {
        public int x;
        public int y;
        public int z;
    }

    public struct Triangle
    {
        public int vv0;
        public int vv1;
        public int vv2;
    }

    public class Delaunay
    {
        public const int MaxVertices = 500;
        public const int MaxTriangles = 1000;
        public Vertex[] Vertex = new Vertex[MaxVertices];
        public Triangle[] Triangle = new Triangle[MaxTriangles];

        private bool InCircle(int xp, int yp, int x1, int y1, int x2, int y2, int x3, int y3, double xc, double yc, double r)
        {
            double eps;
            double m1;
            double m2;
            double mx1;
            double mx2;
            double my1;
            double my2;
            double dx;
            double dy;
            double rsqr;
            double drsqr;
            eps = 0.000000001;
            if (Math.Abs(y1 - y2) < eps && Math.Abs(y2 - y3) < eps)
            {
                MessageBox.Show("INCIRCUM - F - Points are coincident !!");
                return false;
            }

            if (Math.Abs(y2 - y1) < eps)
            {
                m2 = (-(Convert.ToDouble(x3) - Convert.ToDouble(x2)) / (Convert.ToDouble(y3) - Convert.ToDouble(y2)));
                mx2 = Convert.ToDouble((x2 + x3) / 2.0);
                my2 = Convert.ToDouble((y2 + y3) / 2.0);
                xc = Convert.ToDouble((x2 + x1) / 2.0);
                yc = Convert.ToDouble(m2 * (xc - mx2) + my2);
            }
            else if (Math.Abs(y3 - y2) < eps)
            {
                m1 = (-(Convert.ToDouble(x2) - Convert.ToDouble(x1)) / (Convert.ToDouble(y2) - Convert.ToDouble(y1)));
                mx1 = Convert.ToDouble((x1 + x2) / 2.0);
                my1 = Convert.ToDouble((y1 + y2) / 2.0);
                xc = Convert.ToDouble((x3 + x2) / 2.0);
                yc = Convert.ToDouble(m1 * (xc - mx1) + my1);
            }
            else
            {
                m1 = (-(Convert.ToDouble(x2) - Convert.ToDouble(x1)) / (Convert.ToDouble(y2) - Convert.ToDouble(y1)));
                m2 = (-(Convert.ToDouble(x3) - Convert.ToDouble(x2)) / (Convert.ToDouble(y3) - Convert.ToDouble(y2)));
                mx1 = Convert.ToDouble((x1 + x2) / 2.0);
                mx2 = Convert.ToDouble((x2 + x3) / 2.0);
                my1 = Convert.ToDouble((y1 + y2) / 2.0);
                my2 = Convert.ToDouble((y2 + y3) / 2.0);
                xc = Convert.ToDouble((m1 * mx1 - m2 * mx2 + my2 - my1) / (m1 - m2));
                yc = Convert.ToDouble(m1 * (xc - mx1) + my1);
            }
            dx = (Convert.ToDouble(x2) - Convert.ToDouble(xc));
            dy = (Convert.ToDouble(y2) - Convert.ToDouble(yc));
            rsqr = Convert.ToDouble(dx * dx + dy * dy);
            r = Convert.ToDouble(Math.Sqrt(rsqr));
            dx = Convert.ToDouble(xp - xc);
            dy = Convert.ToDouble(yp - yc);
            drsqr = Convert.ToDouble(dx * dx + dy * dy);
            if (drsqr <= rsqr)
            {
                return true;
            }
            return false;
        }

        private int WhichSide(int xp, int yp, int x1, int y1, int x2, int y2)
        {
            double equation;
            equation = ((Convert.ToDouble(yp) - Convert.ToDouble(y1)) * (Convert.ToDouble(x2) - Convert.ToDouble(x1))) - ((Convert.ToDouble(y2) - Convert.ToDouble(y1)) * (Convert.ToDouble(xp) - Convert.ToDouble(x1)));
            if (equation > 0)
            {
                return -1;
            }
            else if (equation == 0)
            {
                return 0;
            }
            else
            {
                return 1;
            }
        }

        public int Triangulate(int nvert)
        {
            bool[] Complete = new bool[MaxTriangles];
            long[,] Edges = new long[3, MaxTriangles * 3 + 1];
            int Nedge;
            int xmin;
            int xmax;
            int ymin;
            int ymax;
            int xmid;
            int ymid;
            double dx;
            double dy;
            double dmax;
            int i;
            int j;
            int k;
            int ntri;
            double xc = 0.0;
            double yc = 0.0;
            double r = 0.0;
            bool inc;
            xmin = Vertex[1].x;
            ymin = Vertex[1].y;
            xmax = xmin;
            ymax = ymin;
            for (i = 2; i <= nvert; i++)
            {
                if (Vertex[i].x < xmin)
                {
                    xmin = Vertex[i].x;
                }
                if (Vertex[i].x > xmax)
                {
                    xmax = Vertex[i].x;
                }
                if (Vertex[i].y < ymin)
                {
                    ymin = Vertex[i].y;
                }
                if (Vertex[i].y > ymax)
                {
                    ymax = Vertex[i].y;
                }
            }
            dx = Convert.ToDouble(xmax) - Convert.ToDouble(xmin);
            dy = Convert.ToDouble(ymax) - Convert.ToDouble(ymin);
            if (dx > dy)
            {
                dmax = dx;
            }
            else
            {
                dmax = dy;
            }
            xmid = (xmax + xmin) / 2;
            ymid = (ymax + ymin) / 2;
            Vertex[nvert + 1].x = Convert.ToInt64(xmid - 2 * dmax);
            Vertex[nvert + 1].y = Convert.ToInt64(ymid - dmax);
            Vertex[nvert + 2].x = xmid;
            Vertex[nvert + 2].y = Convert.ToInt64(ymid + 2 * dmax);
            Vertex[nvert + 3].x = Convert.ToInt64(xmid + 2 * dmax);
            Vertex[nvert + 3].y = Convert.ToInt64(ymid - dmax);
            Triangle[1].vv0 = nvert + 1;
            Triangle[1].vv1 = nvert + 2;
            Triangle[1].vv2 = nvert + 3;
            Complete[1] = false;
            ntri = 1;
            for (i = 1; i <= nvert; i++)
            {
                Nedge = 0;
                j = 0;
                do
                {
                    j = j + 1;
                    if (Complete[j] != true)
                    {
                        inc = InCircle(Vertex[i].x, Vertex[i].y, Vertex[Triangle[j].vv0].x, Vertex[Triangle[j].vv0].y, Vertex[Triangle[j].vv1].x, Vertex[Triangle[j].vv1].y, Vertex[Triangle[j].vv2].x, Vertex[Triangle[j].vv2].y, xc, yc, r);
                        if (inc)
                        {
                            Edges[1, Nedge + 1] = Triangle[j].vv0;
                            Edges[2, Nedge + 1] = Triangle[j].vv1;
                            Edges[1, Nedge + 2] = Triangle[j].vv1;
                            Edges[2, Nedge + 2] = Triangle[j].vv2;
                            Edges[1, Nedge + 3] = Triangle[j].vv2;
                            Edges[2, Nedge + 3] = Triangle[j].vv0;
                            Nedge = Nedge + 3;
                            Triangle[j].vv0 = Triangle[ntri].vv0;
                            Triangle[j].vv1 = Triangle[ntri].vv1;
                            Triangle[j].vv2 = Triangle[ntri].vv2;
                            Complete[j] = Complete[ntri];
                            j = j - 1;
                            ntri = ntri - 1;
                        }
                    }
                }
                while (j < ntri);
                for (j = 1; j <= Nedge - 1; j++)
                {
                    if (Edges[1, j] != 0 && Edges[2, j] != 0)
                    {
                        for (k = j + 1; k <= Nedge; k++)
                        {
                            if (Edges[1, k] != 0 && Edges[2, k] != 0)
                            {
                                if (Edges[1, j] == Edges[2, k])
                                {
                                    if (Edges[2, j] == Edges[1, k])
                                    {
                                        Edges[1, j] = 0;
                                        Edges[2, j] = 0;
                                        Edges[1, k] = 0;
                                        Edges[2, k] = 0;
                                    }
                                }
                            }
                        }
                    }
                }
                for (j = 1; j <= Nedge; j++)
                {
                    if (Edges[1, j] != 0 && Edges[2, j] != 0)
                    {
                        ntri = ntri + 1;
                        Triangle[ntri].vv0 = Edges[1, j];
                        Triangle[ntri].vv1 = Edges[2, j];
                        Triangle[ntri].vv2 = i;
                        Complete[ntri] = false;
                    }
                }
            }
            i = 0;
            do
            {
                i = i + 1;
                if (Triangle[i].vv0 > nvert || Triangle[i].vv1 > nvert || Triangle[i].vv2 > nvert)
                {
                    Triangle[i].vv0 = Triangle[ntri].vv0;
                    Triangle[i].vv1 = Triangle[ntri].vv1;
                    Triangle[i].vv2 = Triangle[ntri].vv2;
                    i = i - 1;
                    ntri = ntri - 1;
                }
            }
            while (i < ntri);
            return ntri;
        }
    }
}

POWER BY 315SOFT.COM &
TRUFFER.CN

相关推荐
tinker在coding30 分钟前
Coding Caprice - Linked-List 1
算法·leetcode
XH华5 小时前
初识C语言之二维数组(下)
c语言·算法
南宫生5 小时前
力扣-图论-17【算法学习day.67】
java·学习·算法·leetcode·图论
不想当程序猿_5 小时前
【蓝桥杯每日一题】求和——前缀和
算法·前缀和·蓝桥杯
落魄君子6 小时前
GA-BP分类-遗传算法(Genetic Algorithm)和反向传播算法(Backpropagation)
算法·分类·数据挖掘
菜鸡中的奋斗鸡→挣扎鸡6 小时前
滑动窗口 + 算法复习
数据结构·算法
Lenyiin6 小时前
第146场双周赛:统计符合条件长度为3的子数组数目、统计异或值为给定值的路径数目、判断网格图能否被切割成块、唯一中间众数子序列 Ⅰ
c++·算法·leetcode·周赛·lenyiin
郭wes代码6 小时前
Cmd命令大全(万字详细版)
python·算法·小程序
scan7246 小时前
LILAC采样算法
人工智能·算法·机器学习
菌菌的快乐生活7 小时前
理解支持向量机
算法·机器学习·支持向量机