线性规划(Python)

引入

有这样一些常见的运筹优化问题:_____共有多少,如何去安排分配,使得_____最优

比如,要生产两种机床,利润分别为,机器有不同的维护费用、工作时间,如何安排生产能让总利润最大化?

线性规划(LP)

是研究线性约束条件下线性目标函数的极值问题的数学理论和方法。

线性规划模型特点

  • 要解决的问题是优化类的
  • 目标函数和约束函数都是决策变量的线性函数

线性规划模型的三要素

  • 决策变量:要确定的未知量,由决策者控制
  • 目标函数:决策变量的函数
  • 约束条件:决策变量的取值所受到的约束和限制条件

线性规划模型建立步骤

  • 找到决策变量
  • 确定目标函数
  • 确定约束条件

线性规划模型的表现形式

一般形式:

矩阵形式:

其中

线性规划模型求解

  • 单纯形法------手算
  • matlab、Python函数

Python 代码

python 复制代码
import numpy as np
from scipy.optimize import linprog
# linprog 则是一个线性规划优化函数。
c = np.array([2, 3, 1])
# 表示线性规划问题中目标函数的系数。在这个例子中,目标函数是 (2x_1 + 3x_2 + x_3)。
A_up = np.array([[-1, -4, -2], [-3, -2, 0]])
# 矩阵 A_up 表示不等式约束的系数。
# 每一行对应一个约束条件。
# 第一行表示 (-x_1 - 4x_2 - 2x_3 \leq -8),
# 第二行表示 (-3x_1 - 2x_2 \leq -6)。
b_up = np.array([-8, -6])
# b_up 表示不等式约束的右侧。
# 第一个元素(-8)对应第一个不等式的右侧,
# 第二个元素(-6)对应第二个不等式的右侧。
r = linprog(c, A_ub=A_up, b_ub=b_up, bounds=((0, None), (0, None), (0, None)))
# 使用 linprog 函数,传入目标函数系数 (c)、不等式约束矩阵 (A_up)、不等式约束右侧 (b_up),
# 以及每个变量的取值范围(在这个例子中,(x_1)、(x_2)、(x_3) 都是非负数)。
print(r)

运行结果分析:

message: Optimization terminated successfully. (HiGHS Status 7: Optimal)

  • 说明优化成功终止,并且 HiGHS 状态码为 7,表示达到最优解。

success: True

  • 表示求解器成功找到了最优解。

status: 0

  • 与 HiGHS 状态码相关的信息,这里为0表示成功。

fun: 7.0

  • 最优解的目标函数值是7.0。

x: [ 8.000e-01 1.800e+00 0.000e+00]

  • 最优解对应的变量值为 [0.8, 1.8, 0.0]。

nit: 3

  • 迭代次数,表示找到最优解所经历的迭代次数。

lower: residual: [ 8.000e-01 1.800e+00 0.000e+00]

  • 对应约束下界的残差。

marginals: [ 0.000e+00 0.000e+00 0.000e+00]

  • 对应约束下界的拉格朗日乘子(或者说边际值)。

upper: residual: [ inf inf inf]

  • 对应约束上界的残差。由于上界是无穷大,残差为无穷大。

marginals: [ 0.000e+00 0.000e+00 0.000e+00]

  • 对应约束上界的拉格朗日乘子。

eqlin: residual: []

  • 等式约束的残差。

marginals: []

  • 等式约束的拉格朗日乘子。

ineqlin: residual: [ 0.000e+00 0.000e+00]

  • 不等式约束的残差。

marginals: [-5.000e-01 -5.000e-01]

  • 不等式约束的拉格朗日乘子。

mip_node_count: 0

  • MIP(Mixed Integer Programming,混合整数规划)中的节点数。

mip_dual_bound: 0.0

  • MIP 中的对偶边界值。

mip_gap: 0.0

  • MIP 中的优化间隙。

总体而言,结果表明问题成功被 HiGHS 求解器解决,找到的最优解为 [0.8, 1.8, 0.0],对应的目标函数值为7.0。各种残差和拉格朗日乘子等信息用于检查解的合理性和对应的约束情况。

相关推荐
仙人掌_lz42 分钟前
AI与机器学习ML:利用Python 从零实现神经网络
人工智能·python·机器学习
逸雪飞扬1 小时前
Gradio 非侵入式修改的离线使用方案
python·html
来自外太空的鱼-张小张1 小时前
java将pdf文件转换为图片工具类
java·python·pdf
endNone1 小时前
【机器学习】SAE(Sparse Autoencoders)稀疏自编码器
人工智能·python·深度学习·sae·autoencoder·稀疏自编码器
@解忧杂货铺2 小时前
基于用户的协同过滤推荐算法实现(Java电商平台)
算法·机器学习·推荐算法
爱coding的橙子2 小时前
每日算法刷题Day31 6.14:leetcode二分答案2道题,结束二分答案,开始枚举技巧,用时1h10min
算法·leetcode·职场和发展
@ chen2 小时前
龟兔赛跑算法(Floyd‘s Cycle-Finding Algorithm)寻找重复数
算法
晨曦学习日记2 小时前
leetcode题解538:把二叉搜索树转换为累加树
算法
孟大本事要学习2 小时前
算法第13天|继续学习二叉树:平衡二叉树(递归)、二叉树所有路径(递归)、左叶子之和(递归)
学习·算法
明月与玄武2 小时前
快速掌握Django框架设计思想(图解版)
后端·python·django