计算CNN卷积层和全连接层的参数量

计算CNN卷积层和全连接层的参数量

先前阅读

本文主旨意在搞明白2个问题:
第一个问题

一个卷积操作,他的参数,也就是我们要训练的参数,也就是我们说的权重,有多少个? 看到一个nn.Conv()函数,就能知道有多少个,它由那些因子决定的?

参数量是由以下3个因子决定的:

  • 卷积核大小(HxW)
  • 卷积核维度(D)
  • 卷积核有多少个

则卷积层的参数量为 卷积核大小(HxW) * 卷积核维度(D) * 卷积核有多少个

第二个问题

一个全连接操作,参数又有多少个?它由那些因子决定的?

  • 输入大小为 N
  • 输出大小为 M

则全连接层的参数量为 N×M

计算CNN卷积层的参数量

案例1

动态演示

看上图案例1的计算,输入图像为 5x5x1, 卷积核3x3x1, 输出3x3x1;

思考3个参数:

  • 卷积核大小(HxW) ==》3x3
  • 卷积核维度(D) ==》1
  • 卷积核有多少个 ==》1

参数量为 3x3x1x1 = 9个

案例2

看上图案例2的计算,输入图像为 H1xW1x3, 卷积核3x3x3, 输出H2xW2x1;

思考3个参数:

  • 卷积核大小(HxW) ==》3x3
  • 卷积核维度(D) ==》3
  • 卷积核有多少个 ==》1

参数量为 3x3x3x1 = 27个

从上面的两个案例可以看出, 参数量与输入图像的HxW没有关系, 参数量与输出图像的HxW也没有关系。

案例3

VGG-16为例,conv1-1,第一层

输入224x224x3, 输出是224x224x64,卷积核3x3

思考3个参数:

  • 卷积核大小(HxW) ==》3x3
  • 卷积核维度(D) ==》3
  • 有多少个卷积核 ==》64

卷积核的维度是多少? 是由输入图像的维度决定,这里是3

卷积核的个数是多少? 是由输出图像的维度决定,这里是64

所以参数量 = 3x3x卷积核维度x卷积核个数 = 3x3x3x64 = 27个

Pytorch代码辅助理解

代码

bash 复制代码
nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True, padding_mode='zeros')

案例3中的卷积操作如下:

bash 复制代码
nn.Conv2d(in_channels=3, out_channels=64, kernel_size=3, stride=1, padding=0, dilation=1, groups=1, bias=True, padding_mode='zeros')

参数量计算: = kernel_size * kernel_size * in_channels(卷积核维度) * out_channels(卷积核个数) = 3 * 3 * 3 * 64

stride=1, padding=0, 这两个会影响到输出的HxW,上文已经提到和我们要计算的参数量无关。

最后,补上偏置参数,
每个卷积核都加个偏置 ,所以总得参数量:

参数量计算: = kernel_size * kernel_size * in_channels(卷积核维度) * out_channels(卷积核个数) + bias(=卷积核个数) = 3 * 3 * 3 * 64+64

计算FC全连接层的参数量

先看一段代码,这是我们经常看到的一段代码,先把x解析到1x9的维度,再做全连接操作

python 复制代码
self.fc = nn.Linear(9, 4)

x = x.view(-1, 9) # 把x,解析到1x9的维度,这一个操作是没有权重的
x = self.fc(x) # 做全连接操作

上面的代码对应的操作图,如下

图片来源 | Fully Connected Layer vs. Convolutional Layer: Explained

红色框的参数,就是我们要找的权重参数,有多少个?

思考问题?

  • 输入大小为 N = 9
  • 输出大小为 M =4

计算参数量 = 9x4 = 36个

再看对应的连接图

上图中的每一条连接线(橙色和蓝色的线),都有一个权重参数,共36条,所以有36个参数。

最后,补上偏置参数,

偏置参数数量: 每个输出节点有一个偏置项(bias),因此偏置参数的数量等于输出节点的数量,即 M=4

所以,总的参数数量为N×M+M = 40,即 M 为输出节点数量,N 为输入节点数量。

END


相关推荐
@心都33 分钟前
机器学习数学基础:44.多元线性回归
人工智能·机器学习·线性回归
说私域33 分钟前
基于开源AI大模型的精准零售模式创新——融合AI智能名片与S2B2C商城小程序源码的“人工智能 + 线下零售”路径探索
人工智能·搜索引擎·小程序·开源·零售
熊文豪36 分钟前
Windows本地部署OpenManus并接入Mistral模型的实践记录
人工智能·llm·mistral·manus·openmanus·openmanus开源替代方案·本地llm部署实践
IT猿手38 分钟前
2025最新群智能优化算法:海市蜃楼搜索优化(Mirage Search Optimization, MSO)算法求解23个经典函数测试集,MATLAB
开发语言·人工智能·算法·机器学习·matlab·机器人
IT猿手3 小时前
2025最新群智能优化算法:山羊优化算法(Goat Optimization Algorithm, GOA)求解23个经典函数测试集,MATLAB
人工智能·python·算法·数学建模·matlab·智能优化算法
Jet45054 小时前
玩转ChatGPT:GPT 深入研究功能
人工智能·gpt·chatgpt·deep research·深入研究
毕加锁4 小时前
chatgpt完成python提取PDF简历指定内容的案例
人工智能·chatgpt
Wis4e6 小时前
基于PyTorch的深度学习3——基于autograd的反向传播
人工智能·pytorch·深度学习
西猫雷婶6 小时前
神经网络|(十四)|霍普菲尔德神经网络-Hebbian训练
人工智能·深度学习·神经网络
梦丶晓羽7 小时前
自然语言处理:文本分类
人工智能·python·自然语言处理·文本分类·朴素贝叶斯·逻辑斯谛回归