《动手学深度学习(PyTorch版)》笔记3.3

注:书中对代码的讲解并不详细,本文对很多细节做了详细注释。另外,书上的源代码是在Jupyter Notebook上运行的,较为分散,本文将代码集中起来,并加以完善,全部用vscode在python 3.9.18下测试通过。

Chapter3 Linear Neural Networks

3.3 Concise Implementations of Linear Regression

复制代码
import numpy as np
import torch
from torch.utils import data
from d2l import torch as d2l

true_w=torch.tensor([2,-3.4])
true_b=4.2
features,labels=d2l.synthetic_data(true_w,true_b,1000)

#构造一个pytorch数据迭代器
def load_array(data_arrays,batch_size,is_train=True): #@save
    dataset=data.TensorDataset(*data_arrays)
    #"TensorDataset" is a class provided by the torch.utils.data module which is a dataset wrapper that allows you to create a dataset from a sequence of tensors. 
    #"*data_arrays" is used to unpack the tuple into individual tensors.
    #The '*' operator is used for iterable unpacking.
    #Here, data_arrays is expected to be a tuple containing the input features and corresponding labels. The "*data_arrays" syntax is used to unpack the elements of the tuple and pass them as separate arguments.
    return data.DataLoader(dataset,batch_size,shuffle=is_train)
    #Constructs a PyTorch DataLoader object which is an iterator that provides batches of data during training or testing.
batch_size=10
data_iter=load_array([features,labels],batch_size)
print(next(iter(data_iter)))#调用next()函数时会返回迭代器的下一个项目,并更新迭代器的内部状态以便下次调用

#定义模型变量,nn是神经网络的缩写
from torch import nn
net=nn.Sequential(nn.Linear(2,1))
#Creates a sequential neural network with one linear layer.
#Input size (in_features) is 2, indicating the network expects input with 2 features.
#Output size (out_features) is 1, indicating the network produces 1 output.

#初始化模型参数
net[0].weight.data.normal_(0,0.01)#The underscore at the end (normal_) indicates that this operation is performed in-place, modifying the existing tensor in memory.
net[0].bias.data.fill_(0)

#定义均方误差损失函数,也称平方L2范数,返回所有样本损失的平均值
loss=nn.MSELoss()#MSE:mean squared error 

#定义优化算法(仍是小批量随机梯度下降)
#update the parameters of the neural network (net.parameters()) using gradients computed during backpropagation. 
trainer=torch.optim.SGD(net.parameters(),lr=0.03)#SGD:stochastic gradient descent(随机梯度下降)

#训练
num_epochs=3
for epoch in range(num_epochs):
    for X,y in data_iter:
        l=loss(net(X),y)
        trainer.zero_grad()
        l.backward()
        trainer.step()#Updates the model parameters using the computed gradients and the optimization algorithm.
    l=loss(net(features),labels)
    print(f'epoch {epoch+1},loss {l:.6f}')#{l:.f}表示将变量l格式化为小数点后有6位的浮点数。
    
w=net[0].weight.data
print('w的估计误差:',true_w-w.reshape(true_w.shape))
b=net[0].bias.data
print('b的估计误差:',true_b-b)
相关推荐
凯子坚持 c1 分钟前
Qt 5.14.0 入门框架开发全流程深度解析
开发语言·qt
工业互联网专业2 分钟前
基于python的旅游景点推荐系统_flask+spider
python·flask·毕业设计·源码·课程设计·spider·旅游景点推荐系统
BOF_dcb3 分钟前
TCP/IP网络协议
笔记
lingran__3 分钟前
数据在内存中的存储详解(C语言拓展版)
c语言·开发语言
编程乐学(Arfan开发工程师)3 分钟前
信息收集与分析详解:渗透测试的侦察兵 (CISP-PTE 核心技能)
java·开发语言·javascript·python
bugcome_com4 分钟前
深入解析 C# 中 int? 与 int 的核心区别:可空值类型的本质与最佳实践
开发语言·c#
superman超哥5 分钟前
仓颉语言中异常处理入门的深度剖析与工程实践
c语言·开发语言·c++·python·仓颉
通义灵码5 分钟前
使用记忆提升开发效率
人工智能·qoder·记忆能力
Lv11770087 分钟前
Visual Studio中的常量和只读变量
ide·笔记·c#·visual studio
深蓝海拓9 分钟前
PySide6从0开始学习的笔记(十四)创建一个简单的实用UI项目
开发语言·笔记·python·qt·学习·ui·pyqt