《动手学深度学习(PyTorch版)》笔记3.3

注:书中对代码的讲解并不详细,本文对很多细节做了详细注释。另外,书上的源代码是在Jupyter Notebook上运行的,较为分散,本文将代码集中起来,并加以完善,全部用vscode在python 3.9.18下测试通过。

Chapter3 Linear Neural Networks

3.3 Concise Implementations of Linear Regression

复制代码
import numpy as np
import torch
from torch.utils import data
from d2l import torch as d2l

true_w=torch.tensor([2,-3.4])
true_b=4.2
features,labels=d2l.synthetic_data(true_w,true_b,1000)

#构造一个pytorch数据迭代器
def load_array(data_arrays,batch_size,is_train=True): #@save
    dataset=data.TensorDataset(*data_arrays)
    #"TensorDataset" is a class provided by the torch.utils.data module which is a dataset wrapper that allows you to create a dataset from a sequence of tensors. 
    #"*data_arrays" is used to unpack the tuple into individual tensors.
    #The '*' operator is used for iterable unpacking.
    #Here, data_arrays is expected to be a tuple containing the input features and corresponding labels. The "*data_arrays" syntax is used to unpack the elements of the tuple and pass them as separate arguments.
    return data.DataLoader(dataset,batch_size,shuffle=is_train)
    #Constructs a PyTorch DataLoader object which is an iterator that provides batches of data during training or testing.
batch_size=10
data_iter=load_array([features,labels],batch_size)
print(next(iter(data_iter)))#调用next()函数时会返回迭代器的下一个项目,并更新迭代器的内部状态以便下次调用

#定义模型变量,nn是神经网络的缩写
from torch import nn
net=nn.Sequential(nn.Linear(2,1))
#Creates a sequential neural network with one linear layer.
#Input size (in_features) is 2, indicating the network expects input with 2 features.
#Output size (out_features) is 1, indicating the network produces 1 output.

#初始化模型参数
net[0].weight.data.normal_(0,0.01)#The underscore at the end (normal_) indicates that this operation is performed in-place, modifying the existing tensor in memory.
net[0].bias.data.fill_(0)

#定义均方误差损失函数,也称平方L2范数,返回所有样本损失的平均值
loss=nn.MSELoss()#MSE:mean squared error 

#定义优化算法(仍是小批量随机梯度下降)
#update the parameters of the neural network (net.parameters()) using gradients computed during backpropagation. 
trainer=torch.optim.SGD(net.parameters(),lr=0.03)#SGD:stochastic gradient descent(随机梯度下降)

#训练
num_epochs=3
for epoch in range(num_epochs):
    for X,y in data_iter:
        l=loss(net(X),y)
        trainer.zero_grad()
        l.backward()
        trainer.step()#Updates the model parameters using the computed gradients and the optimization algorithm.
    l=loss(net(features),labels)
    print(f'epoch {epoch+1},loss {l:.6f}')#{l:.f}表示将变量l格式化为小数点后有6位的浮点数。
    
w=net[0].weight.data
print('w的估计误差:',true_w-w.reshape(true_w.shape))
b=net[0].bias.data
print('b的估计误差:',true_b-b)
相关推荐
cheniie3 分钟前
python xmlrpc踩坑记录
python·踩坑·xmlrpc
咖啡の猫2 小时前
搭建Python开发环境
开发语言·python
大千AI助手2 小时前
代价复杂度剪枝(CCP)详解:原理、实现与应用
人工智能·决策树·机器学习·剪枝·大千ai助手·代价复杂度剪枝·ccp
做怪小疯子2 小时前
LeetCode 热题 100——子串——和为 K 的子数组
算法·leetcode·职场和发展
zl_vslam3 小时前
SLAM中的非线性优-3D图优化之李群李代数在Opencv-PNP中的应用(四)
人工智能·opencv·算法·计算机视觉
程序猿小蒜3 小时前
基于springboot的共享汽车管理系统开发与设计
java·开发语言·spring boot·后端·spring·汽车
whaosoft-1433 小时前
51c视觉~3D~合集8
人工智能
听风吟丶4 小时前
Java 8 Stream API 高级实战:从数据处理到性能优化的深度解析
开发语言·python
hygge9994 小时前
Spring Boot + MyBatis 整合与 MyBatis 原理全解析
java·开发语言·经验分享·spring boot·后端·mybatis
AA陈超5 小时前
ASC学习笔记0014:手动添加一个新的属性集
c++·笔记·学习·ue5