《动手学深度学习(PyTorch版)》笔记3.3

注:书中对代码的讲解并不详细,本文对很多细节做了详细注释。另外,书上的源代码是在Jupyter Notebook上运行的,较为分散,本文将代码集中起来,并加以完善,全部用vscode在python 3.9.18下测试通过。

Chapter3 Linear Neural Networks

3.3 Concise Implementations of Linear Regression

复制代码
import numpy as np
import torch
from torch.utils import data
from d2l import torch as d2l

true_w=torch.tensor([2,-3.4])
true_b=4.2
features,labels=d2l.synthetic_data(true_w,true_b,1000)

#构造一个pytorch数据迭代器
def load_array(data_arrays,batch_size,is_train=True): #@save
    dataset=data.TensorDataset(*data_arrays)
    #"TensorDataset" is a class provided by the torch.utils.data module which is a dataset wrapper that allows you to create a dataset from a sequence of tensors. 
    #"*data_arrays" is used to unpack the tuple into individual tensors.
    #The '*' operator is used for iterable unpacking.
    #Here, data_arrays is expected to be a tuple containing the input features and corresponding labels. The "*data_arrays" syntax is used to unpack the elements of the tuple and pass them as separate arguments.
    return data.DataLoader(dataset,batch_size,shuffle=is_train)
    #Constructs a PyTorch DataLoader object which is an iterator that provides batches of data during training or testing.
batch_size=10
data_iter=load_array([features,labels],batch_size)
print(next(iter(data_iter)))#调用next()函数时会返回迭代器的下一个项目,并更新迭代器的内部状态以便下次调用

#定义模型变量,nn是神经网络的缩写
from torch import nn
net=nn.Sequential(nn.Linear(2,1))
#Creates a sequential neural network with one linear layer.
#Input size (in_features) is 2, indicating the network expects input with 2 features.
#Output size (out_features) is 1, indicating the network produces 1 output.

#初始化模型参数
net[0].weight.data.normal_(0,0.01)#The underscore at the end (normal_) indicates that this operation is performed in-place, modifying the existing tensor in memory.
net[0].bias.data.fill_(0)

#定义均方误差损失函数,也称平方L2范数,返回所有样本损失的平均值
loss=nn.MSELoss()#MSE:mean squared error 

#定义优化算法(仍是小批量随机梯度下降)
#update the parameters of the neural network (net.parameters()) using gradients computed during backpropagation. 
trainer=torch.optim.SGD(net.parameters(),lr=0.03)#SGD:stochastic gradient descent(随机梯度下降)

#训练
num_epochs=3
for epoch in range(num_epochs):
    for X,y in data_iter:
        l=loss(net(X),y)
        trainer.zero_grad()
        l.backward()
        trainer.step()#Updates the model parameters using the computed gradients and the optimization algorithm.
    l=loss(net(features),labels)
    print(f'epoch {epoch+1},loss {l:.6f}')#{l:.f}表示将变量l格式化为小数点后有6位的浮点数。
    
w=net[0].weight.data
print('w的估计误差:',true_w-w.reshape(true_w.shape))
b=net[0].bias.data
print('b的估计误差:',true_b-b)
相关推荐
const5444 分钟前
cpp自学 day2(—>运算符)
开发语言·c++
心扬5 分钟前
python生成器
开发语言·python
明月醉窗台5 分钟前
qt使用笔记二:main.cpp详解
数据库·笔记·qt
mouseliu11 分钟前
python之二:docker部署项目
前端·python
阿蒙Amon12 分钟前
06. C#入门系列【自定义类型】:从青铜到王者的进阶之路
开发语言·c#
虾球xz15 分钟前
CppCon 2015 学习:CLANG/C2 for Windows
开发语言·c++·windows·学习
狂小虎28 分钟前
亲测解决self.transform is not exist
python·深度学习
量子位29 分钟前
苹果炮轰推理模型全是假思考!4 个游戏戳破神话,o3/DeepSeek 高难度全崩溃
人工智能·deepseek
Python智慧行囊30 分钟前
Python 中 Django 中间件:原理、方法与实战应用
python·中间件·架构·django·开发
黑鹿02232 分钟前
机器学习基础(四) 决策树
人工智能·决策树·机器学习