使用程序设计流程图解析并建立神经网络(不依赖深度学习library)

介绍:

Flow chart for a simple neural network:

#(1)Take inputs 输入

#(2)Add bias (if required)

#(3)Assign random weights to input features 随机一个权重

#(4)Run the code for training. 训练集训练

#(5)Find the error in prediction. 找预测损失

#(6)Update the weight by gradient descent algorithm. 根据梯度下降更新权重

#(7)Repeat the training phase with updated weights. 重复训练更新权重

#(8)Make predictions. 做预测

参考: 深度学习使用python建立最简单的神经元neuron-CSDN博客

数据:

python 复制代码
# Import the required libraries
import numpy as np
import pandas as pd
from matplotlib import pyplot as plt

# Load the data
df = pd.read_csv('Lesson44-data.csv') 
df

一、

python 复制代码
# Separate the features and label
x = df[['Glucose','BloodPressure']]#特征值
y = df['Outcome']#标签

三、

python 复制代码
np.random.seed(10)#初始化
label = y.values.reshape(y.shape[0],1)
weights = np.random.rand(2,1)#随机一个权重
bias = np.random.rand(1)
learning_rate = 0.0000004#梯度下降步长
epochs = 1000 #迭代次数

四~七、

python 复制代码
# Define the sigmoid function
def sigmoid(input):    
    output = 1 / (1 + np.exp(-input))
    return output



# Define the sigmoid derivative function基于sigmoid导数
def sigmoid_derivative(input):
    return sigmoid(input) * (1.0 - sigmoid(input))




def train_network(x,y,weights,bias,learning_rate,epochs):  #Epochs. 来回 One Epoch is when an ENTIRE dataset is passed forward and backward through the neural network only ONCE.
    j=0                                                    #weights 权重
    k=[]                                                   #learning_rate梯度下降的步长
    l=[]
    for epoch in range(epochs):       
        dot_prod = np.dot(x, weights) + bias#np.dot矩阵乘积
        # using sigmoid
        preds = sigmoid(dot_prod)
        # Calculating the error
        errors = preds - y  #计算错误,预测-实际
        # sigmoid derivative
        deriva_preds = sigmoid_derivative(preds)
        deriva_product = errors * deriva_preds
        #update the weights
        weights = weights -  np.dot(x.T, deriva_product) * learning_rate
        loss = errors.sum()
        j=j+1
        k.append(j)
        l.append(loss)
        print(j,loss)
    for i in deriva_product:
        bias = bias -  i * learning_rate
    plt.plot(k,l)
    return weights,bias

weights_final, bias_final = train_network(x,label,weights,bias,learning_rate,epochs)

八、

python 复制代码
weights_final
'''结果:
array([[ 0.06189634],
       [-0.12595182]])
'''

bias_final
#结果:array([0.633647])

# Prediction
inputs = [[101,76]]
dot_prod = np.dot(inputs, weights_final) + bias_final
preds = sigmoid(dot_prod) >= 1/2
preds
#结果:array([[False]])

inputs = [[137,40]]
dot_prod = np.dot(inputs, weights_final) + bias_final
preds = sigmoid(dot_prod) >= 1/2
preds
#结果:array([[ True]])
相关推荐
梦想画家4 小时前
基于PyTorch的时间序列异常检测管道构建指南
人工智能·pytorch·python
一碗绿豆汤5 小时前
机器学习第二阶段
人工智能·机器学习
PythonFun5 小时前
OCR图片识别翻译工具功能及源码
python·ocr·机器翻译
河南骏5 小时前
RAG_检索进阶
人工智能·深度学习
虫师c5 小时前
Python浪漫弹窗程序:Tkinter实现动态祝福窗口教程
python·tkinter·动画效果·gui编程·弹窗效果
灯火不休时6 小时前
95%准确率!CNN交通标志识别系统开源
人工智能·python·深度学习·神经网络·cnn·tensorflow
deephub7 小时前
FastMCP 入门:用 Python 快速搭建 MCP 服务器接入 LLM
服务器·人工智能·python·大语言模型·mcp
南宫乘风7 小时前
基于 Flask + APScheduler + MySQL 的自动报表系统设计
python·mysql·flask
番石榴AI7 小时前
基于机器学习优化的主图选择方法(酒店,景点,餐厅等APP上的主图展示推荐)
图像处理·人工智能·python·机器学习
数据与后端架构提升之路8 小时前
构建一个可进化的自动驾驶数据管道:规则引擎与异常检测的集成
人工智能·机器学习·自动驾驶