使用程序设计流程图解析并建立神经网络(不依赖深度学习library)

介绍:

Flow chart for a simple neural network:

#(1)Take inputs 输入

#(2)Add bias (if required)

#(3)Assign random weights to input features 随机一个权重

#(4)Run the code for training. 训练集训练

#(5)Find the error in prediction. 找预测损失

#(6)Update the weight by gradient descent algorithm. 根据梯度下降更新权重

#(7)Repeat the training phase with updated weights. 重复训练更新权重

#(8)Make predictions. 做预测

参考: 深度学习使用python建立最简单的神经元neuron-CSDN博客

数据:

python 复制代码
# Import the required libraries
import numpy as np
import pandas as pd
from matplotlib import pyplot as plt

# Load the data
df = pd.read_csv('Lesson44-data.csv') 
df

一、

python 复制代码
# Separate the features and label
x = df[['Glucose','BloodPressure']]#特征值
y = df['Outcome']#标签

三、

python 复制代码
np.random.seed(10)#初始化
label = y.values.reshape(y.shape[0],1)
weights = np.random.rand(2,1)#随机一个权重
bias = np.random.rand(1)
learning_rate = 0.0000004#梯度下降步长
epochs = 1000 #迭代次数

四~七、

python 复制代码
# Define the sigmoid function
def sigmoid(input):    
    output = 1 / (1 + np.exp(-input))
    return output



# Define the sigmoid derivative function基于sigmoid导数
def sigmoid_derivative(input):
    return sigmoid(input) * (1.0 - sigmoid(input))




def train_network(x,y,weights,bias,learning_rate,epochs):  #Epochs. 来回 One Epoch is when an ENTIRE dataset is passed forward and backward through the neural network only ONCE.
    j=0                                                    #weights 权重
    k=[]                                                   #learning_rate梯度下降的步长
    l=[]
    for epoch in range(epochs):       
        dot_prod = np.dot(x, weights) + bias#np.dot矩阵乘积
        # using sigmoid
        preds = sigmoid(dot_prod)
        # Calculating the error
        errors = preds - y  #计算错误,预测-实际
        # sigmoid derivative
        deriva_preds = sigmoid_derivative(preds)
        deriva_product = errors * deriva_preds
        #update the weights
        weights = weights -  np.dot(x.T, deriva_product) * learning_rate
        loss = errors.sum()
        j=j+1
        k.append(j)
        l.append(loss)
        print(j,loss)
    for i in deriva_product:
        bias = bias -  i * learning_rate
    plt.plot(k,l)
    return weights,bias

weights_final, bias_final = train_network(x,label,weights,bias,learning_rate,epochs)

八、

python 复制代码
weights_final
'''结果:
array([[ 0.06189634],
       [-0.12595182]])
'''

bias_final
#结果:array([0.633647])

# Prediction
inputs = [[101,76]]
dot_prod = np.dot(inputs, weights_final) + bias_final
preds = sigmoid(dot_prod) >= 1/2
preds
#结果:array([[False]])

inputs = [[137,40]]
dot_prod = np.dot(inputs, weights_final) + bias_final
preds = sigmoid(dot_prod) >= 1/2
preds
#结果:array([[ True]])
相关推荐
川石课堂软件测试2 分钟前
性能测试|docker容器下搭建JMeter+Grafana+Influxdb监控可视化平台
运维·javascript·深度学习·jmeter·docker·容器·grafana
985小水博一枚呀10 分钟前
【深度学习滑坡制图|论文解读3】基于融合CNN-Transformer网络和深度迁移学习的遥感影像滑坡制图方法
人工智能·深度学习·神经网络·cnn·transformer
龙哥说跨境11 分钟前
如何利用指纹浏览器爬虫绕过Cloudflare的防护?
服务器·网络·python·网络爬虫
985小水博一枚呀15 分钟前
【深度学习滑坡制图|论文解读2】基于融合CNN-Transformer网络和深度迁移学习的遥感影像滑坡制图方法
人工智能·深度学习·神经网络·cnn·transformer·迁移学习
数据与后端架构提升之路24 分钟前
从神经元到神经网络:深度学习的进化之旅
人工智能·神经网络·学习
小白学大数据26 分钟前
正则表达式在Kotlin中的应用:提取图片链接
开发语言·python·selenium·正则表达式·kotlin
flashman91128 分钟前
python在word中插入图片
python·microsoft·自动化·word
菜鸟的人工智能之路31 分钟前
桑基图在医学数据分析中的更复杂应用示例
python·数据分析·健康医疗
懒大王爱吃狼2 小时前
Python教程:python枚举类定义和使用
开发语言·前端·javascript·python·python基础·python编程·python书籍
深度学习实战训练营2 小时前
基于CNN-RNN的影像报告生成
人工智能·深度学习