Tensorflow2.0笔记 - Tensor的限值clip操作

本笔记主要记录使用maximum/minimum,clip_by_value和clip_by_norm来进行张量值的限值操作。

复制代码
import tensorflow as tf
import numpy as np

tf.__version__


#maximum/minimumz做上下界的限值
tensor = tf.random.shuffle(tf.range(10))
print(tensor)

#maximum(x, y, name=None)
#对比x和y,保留两者最大值,可以用作保证最小值为某一个特定值
#https://blog.csdn.net/qq_36379719/article/details/104321914
print("=====tf.maximum(tensor, 5):\n", tf.maximum(tensor, 5).numpy())
print("=====tf.maximum(tensor, [6,6,6,5,5,5,4,4,4,3]):\n", tf.maximum(tensor, [6,6,6,5,5,5,4,4,4,3]).numpy())
#minimum作用和maximum正好相反,可以用来保证最大值为某一个特定值
print("=====tf.minimum(tensor, 5):\n", tf.minimum(tensor, 5).numpy())
print("=====tf.minimum(tensor, [6,6,6,5,5,5,4,4,4,3]):\n", tf.minimum(tensor, [6,6,6,5,5,5,4,4,4,3]).numpy())


#clip_by_value,可以指定上下界参数
#这个函数本身可以用maximum和minimum组合实现
tensor = tf.random.shuffle(tf.range(10))
print(tensor)
#限定tensor的元素值在[2,5]区间
print("=====tf.clip_by_value(tensor,2,5):\n", tf.clip_by_value(tensor, 2, 5).numpy())

#多维tensor
tensor = tf.random.uniform([2,3,3], maxval=10, dtype=tf.int32)
print(tensor)
print("=====tf.clip_by_value(tensor,2,5):\n", tf.clip_by_value(tensor, 2, 5).numpy())


#relu函数限值,大于0的值保留原值,小于零的值变为0
#第一种方式(推荐),使用tf.nn.relu()
tensor = tf.random.uniform([3,3], minval=-10, maxval=10, dtype=tf.int32)
print(tensor)
print("=====tf.nn.relu(tensor):\n", tf.nn.relu(tensor).numpy())

#第二种方式,使用maximum
print("=====tf.maximum(tensor, 0) simulates relu:\n", tf.maximum(tensor, 0).numpy())

#根据范数来限值,clip_by_norm
#参考资料:https://blog.csdn.net/wn87947/article/details/82345537
#应用场景一般是针对梯度进行限值处理,通过范数clip会保持梯度方向不变
tensor = tf.convert_to_tensor([[3,2],[3,2]], dtype=tf.float32)
print(tensor)
print("Tensor Norm:", tf.norm(tensor).numpy())
clipped = tf.clip_by_norm(tensor, 3)
print("=====tf.clip_by_norm(tensor, 3):", clipped)
print("     Norm:", tf.norm(clipped))

运行结果:

相关推荐
白雪讲堂7 分钟前
AI搜索品牌曝光资料包(精准适配文心一言/Kimi/DeepSeek等场景)
大数据·人工智能·搜索引擎·ai·文心一言·deepseek
The Future is mine11 分钟前
Python计算经纬度两点之间距离
开发语言·python
斯汤雷12 分钟前
Matlab绘图案例,设置图片大小,坐标轴比例为黄金比
数据库·人工智能·算法·matlab·信息可视化
九月镇灵将13 分钟前
GitPython库快速应用入门
git·python·gitpython
ejinxian19 分钟前
Spring AI Alibaba 快速开发生成式 Java AI 应用
java·人工智能·spring
葡萄成熟时_23 分钟前
【第十三届“泰迪杯”数据挖掘挑战赛】【2025泰迪杯】【代码篇】A题解题全流程(持续更新)
人工智能·数据挖掘
杉之24 分钟前
SpringBlade 数据库字段的自动填充
java·笔记·学习·spring·tomcat
机器之心37 分钟前
一篇论文,看见百度广告推荐系统在大模型时代的革新
人工智能