Tensorflow2.0笔记 - Tensor的限值clip操作

本笔记主要记录使用maximum/minimum,clip_by_value和clip_by_norm来进行张量值的限值操作。

复制代码
import tensorflow as tf
import numpy as np

tf.__version__


#maximum/minimumz做上下界的限值
tensor = tf.random.shuffle(tf.range(10))
print(tensor)

#maximum(x, y, name=None)
#对比x和y,保留两者最大值,可以用作保证最小值为某一个特定值
#https://blog.csdn.net/qq_36379719/article/details/104321914
print("=====tf.maximum(tensor, 5):\n", tf.maximum(tensor, 5).numpy())
print("=====tf.maximum(tensor, [6,6,6,5,5,5,4,4,4,3]):\n", tf.maximum(tensor, [6,6,6,5,5,5,4,4,4,3]).numpy())
#minimum作用和maximum正好相反,可以用来保证最大值为某一个特定值
print("=====tf.minimum(tensor, 5):\n", tf.minimum(tensor, 5).numpy())
print("=====tf.minimum(tensor, [6,6,6,5,5,5,4,4,4,3]):\n", tf.minimum(tensor, [6,6,6,5,5,5,4,4,4,3]).numpy())


#clip_by_value,可以指定上下界参数
#这个函数本身可以用maximum和minimum组合实现
tensor = tf.random.shuffle(tf.range(10))
print(tensor)
#限定tensor的元素值在[2,5]区间
print("=====tf.clip_by_value(tensor,2,5):\n", tf.clip_by_value(tensor, 2, 5).numpy())

#多维tensor
tensor = tf.random.uniform([2,3,3], maxval=10, dtype=tf.int32)
print(tensor)
print("=====tf.clip_by_value(tensor,2,5):\n", tf.clip_by_value(tensor, 2, 5).numpy())


#relu函数限值,大于0的值保留原值,小于零的值变为0
#第一种方式(推荐),使用tf.nn.relu()
tensor = tf.random.uniform([3,3], minval=-10, maxval=10, dtype=tf.int32)
print(tensor)
print("=====tf.nn.relu(tensor):\n", tf.nn.relu(tensor).numpy())

#第二种方式,使用maximum
print("=====tf.maximum(tensor, 0) simulates relu:\n", tf.maximum(tensor, 0).numpy())

#根据范数来限值,clip_by_norm
#参考资料:https://blog.csdn.net/wn87947/article/details/82345537
#应用场景一般是针对梯度进行限值处理,通过范数clip会保持梯度方向不变
tensor = tf.convert_to_tensor([[3,2],[3,2]], dtype=tf.float32)
print(tensor)
print("Tensor Norm:", tf.norm(tensor).numpy())
clipped = tf.clip_by_norm(tensor, 3)
print("=====tf.clip_by_norm(tensor, 3):", clipped)
print("     Norm:", tf.norm(clipped))

运行结果:

相关推荐
paperxie_xiexuo6 分钟前
文献综述不是写作任务,而是一次“认知脚手架”的搭建:PaperXie 如何通过结构化输入,帮你把碎片阅读转化为可辩护的学术立场?
大数据·人工智能·ai写作
数据门徒10 分钟前
《人工智能现代方法(第4版)》 第6章 约束满足问题 学习笔记
人工智能·笔记·学习·算法
梁正雄23 分钟前
10、Python面向对象编程-2
开发语言·python
java_logo25 分钟前
MILVUS Docker 容器化部署指南
运维·人工智能·docker·容器·prometheus·milvus
im_AMBER27 分钟前
weather-app开发手记 01 HTTP请求基础 | Axios GET 请求
笔记·网络协议·学习·计算机网络·http·axios
Jo乔戈里28 分钟前
Python复制文件到剪切板
开发语言·python
Mxsoft61931 分钟前
「S变换精准定位谐波源!某次电能质量异常,时频分析救场!」
人工智能
小鱼儿亮亮36 分钟前
SSE传输方式的MCP服务器创建流程
python·mcp
B站_计算机毕业设计之家37 分钟前
python招聘数据 求职就业数据可视化平台 大数据毕业设计 BOSS直聘数据可视化分析系统 Flask框架 Echarts可视化 selenium爬虫技术✅
大数据·python·深度学习·考研·信息可视化·数据分析·flask
数据门徒37 分钟前
《人工智能现代方法(第4版)》 第8章 一阶逻辑 学习笔记
人工智能·笔记·学习·算法