tensorflow调用gpu时报错:找不到cupti64_112.dll

环境:tensorflow 2.5,cuda11.4

看了C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.1\bin路径下,有cublas64_11.dll等dll文件,一开始以为是没装cupti64_112.dll这个库,后来发现可能是没在系统变量里加入的原因。

步骤一:将路径C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.1\extras\CUPTI\lib64 下的文件cupti64_2020.2.0.dll复制到路径C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.1\bin下,并将cupti64_2020.2.0.dll改名为cupti64_112.dll,观察是否报错,如果继续报错,步骤二

步骤二:

在CMD中输入nvcc --version测试CUDA是否安装正确,如果显示'nvcc' 不是内部或外部命令,也不是可运行的程序,或批处理文件,则可能是路径没加到系统环境变量里

添加CUDA到系统环境变量,请按照以下步骤操作:

  1. 打开CUDA的安装目录,找到bin目录,它应该在以下路径:"C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\vXX.X\bin" (这里的vXX.X是指你所安装的CUDA版本)。

  2. 复制这个目录的路径。

  3. 打开计算机的"高级系统设置"(可以在开始菜单搜索栏中搜索)。

  4. 点击"环境变量"。

  5. 在"系统变量"部分,找到并点击"Path",然后点击"编辑"。

  6. 在新打开的窗口中,点击"新建",然后将刚才复制的路径粘贴到这里,点击确定。

完成以上步骤之后,在命令提示符中输入nvcc --version应该就可以看到你安装的CUDA的版本信息了。如果仍然看不到,请重启计算机后再试一次,因为环境变量的变动需要重启后才能生效。

最后,如果问题仍然存在,可能CUDA的安装出现了问题,你需要卸载CUDA并重新安装。

相关推荐
咖啡の猫1 小时前
搭建Python开发环境
开发语言·python
大千AI助手1 小时前
代价复杂度剪枝(CCP)详解:原理、实现与应用
人工智能·决策树·机器学习·剪枝·大千ai助手·代价复杂度剪枝·ccp
zl_vslam2 小时前
SLAM中的非线性优-3D图优化之李群李代数在Opencv-PNP中的应用(四)
人工智能·opencv·算法·计算机视觉
whaosoft-1432 小时前
51c视觉~3D~合集8
人工智能
听风吟丶3 小时前
Java 8 Stream API 高级实战:从数据处理到性能优化的深度解析
开发语言·python
澳鹏Appen5 小时前
数据集月度精选 | 高质量具身智能数据集:打开机器人“感知-决策-动作”闭环的钥匙
人工智能·机器人·具身智能
文人sec5 小时前
pytest1-接口自动化测试场景
软件测试·python·单元测试·pytest
q***71016 小时前
开源模型应用落地-工具使用篇-Spring AI-Function Call(八)
人工智能·spring·开源
极限实验室7 小时前
Coco AI 参选 Gitee 2025 最受欢迎开源软件!您的每一票,都是对中国开源的硬核支持
人工智能·开源
secondyoung7 小时前
Mermaid流程图高效转换为图片方案
c语言·人工智能·windows·vscode·python·docker·流程图