tensorflow调用gpu时报错:找不到cupti64_112.dll

环境:tensorflow 2.5,cuda11.4

看了C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.1\bin路径下,有cublas64_11.dll等dll文件,一开始以为是没装cupti64_112.dll这个库,后来发现可能是没在系统变量里加入的原因。

步骤一:将路径C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.1\extras\CUPTI\lib64 下的文件cupti64_2020.2.0.dll复制到路径C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.1\bin下,并将cupti64_2020.2.0.dll改名为cupti64_112.dll,观察是否报错,如果继续报错,步骤二

步骤二:

在CMD中输入nvcc --version测试CUDA是否安装正确,如果显示'nvcc' 不是内部或外部命令,也不是可运行的程序,或批处理文件,则可能是路径没加到系统环境变量里

添加CUDA到系统环境变量,请按照以下步骤操作:

  1. 打开CUDA的安装目录,找到bin目录,它应该在以下路径:"C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\vXX.X\bin" (这里的vXX.X是指你所安装的CUDA版本)。

  2. 复制这个目录的路径。

  3. 打开计算机的"高级系统设置"(可以在开始菜单搜索栏中搜索)。

  4. 点击"环境变量"。

  5. 在"系统变量"部分,找到并点击"Path",然后点击"编辑"。

  6. 在新打开的窗口中,点击"新建",然后将刚才复制的路径粘贴到这里,点击确定。

完成以上步骤之后,在命令提示符中输入nvcc --version应该就可以看到你安装的CUDA的版本信息了。如果仍然看不到,请重启计算机后再试一次,因为环境变量的变动需要重启后才能生效。

最后,如果问题仍然存在,可能CUDA的安装出现了问题,你需要卸载CUDA并重新安装。

相关推荐
Java后端的Ai之路5 小时前
【Python 教程15】-Python和Web
python
那个村的李富贵5 小时前
光影魔术师:CANN加速实时图像风格迁移,让每张照片秒变大师画作
人工智能·aigc·cann
冬奇Lab6 小时前
一天一个开源项目(第15篇):MapToPoster - 用代码将城市地图转换为精美的海报设计
python·开源
腾讯云开发者6 小时前
“痛点”到“通点”!一份让 AI 真正落地产生真金白银的实战指南
人工智能
CareyWYR6 小时前
每周AI论文速递(260202-260206)
人工智能
hopsky7 小时前
大模型生成PPT的技术原理
人工智能
禁默8 小时前
打通 AI 与信号处理的“任督二脉”:Ascend SIP Boost 加速库深度实战
人工智能·信号处理·cann
心疼你的一切8 小时前
昇腾CANN实战落地:从智慧城市到AIGC,解锁五大行业AI应用的算力密码
数据仓库·人工智能·深度学习·aigc·智慧城市·cann
AI绘画哇哒哒8 小时前
【干货收藏】深度解析AI Agent框架:设计原理+主流选型+项目实操,一站式学习指南
人工智能·学习·ai·程序员·大模型·产品经理·转行
数据分析能量站8 小时前
Clawdbot(现名Moltbot)-现状分析
人工智能