Elasticsearch:使用查询规则(query rules)进行搜索

在之前的文章 "Elasticsearch 8.10 中引入查询规则 - query rules",我们详述了如何使用 query rules 来进行搜索。这个交互式笔记本将向你介绍如何使用官方 Elasticsearch Python 客户端来使用查询规则。 你将使用 query rules API 将查询规则存储在 Elasticsearch 中,并使用 rule_query 查询它们。

安装

安装 Elasticsearch 及 Kibana

如果你还没有安装好自己的 Elasticsearch 及 Kibana,那么请参考一下的文章来进行安装:

在安装的时候,请选择 Elastic Stack 8.x 进行安装。在安装的时候,我们可以看到如下的安装信息:

环境变量

在启动 Jupyter 之前,我们设置如下的环境变量:

export ES_USER="elastic"
export ES_PASSWORD="xnLj56lTrH98Lf_6n76y"
export ES_ENDPOINT="localhost"

请在上面修改相应的变量的值。这个需要在启动 jupyter 之前运行。

拷贝 Elasticsearch 证书

我们把 Elasticsearch 的证书拷贝到当前的目录下:

$ pwd
/Users/liuxg/python/elser
$ cp ~/elastic/elasticsearch-8.12.0/config/certs/http_ca.crt .
$ ls http_ca.crt 
http_ca.crt

安装 Python 依赖包

python3 -m pip install -qU elasticsearch load_dotenv

准备数据

我们在项目当前的目录下创建如下的数据文件:

query-rules-data.json

[
  {
    "id": "us1",
    "content": {
      "name": "PureJuice Pro",
      "description": "PureJuice Pro: Experience the pinnacle of wireless charging. Blending rapid charging tech with sleek design, it ensures your devices are powered swiftly and safely. The future of charging is here.",
      "price": 15.00,
      "currency": "USD",
      "plug_type": "B",
      "voltage": "120v"
    }
  },
  {
    "id": "uk1",
    "content": {
      "name": "PureJuice Pro - UK Compatible",
      "description": "PureJuice Pro: Redefining wireless charging. Seamlessly merging swift charging capabilities with a refined aesthetic, it guarantees your devices receive rapid and secure power. Welcome to the next generation of charging.",
      "price": 20.00,
      "currency": "GBP",
      "plug_type": "G",
      "voltage": "230V"
    }
  },
  {
    "id": "eu1",
    "content": {
      "name": "PureJuice Pro - Wireless Charger suitable for European plugs",
      "description": "PureJuice Pro: Elevating wireless charging. Combining unparalleled charging speeds with elegant design, it promises both rapid and dependable energy for your devices. Embrace the future of wireless charging.",
      "price": 18.00,
      "currency": "EUR",
      "plug_type": "C",
      "voltage": "230V"
    }
  },
  {
    "id": "preview1",
    "content": {
      "name": "PureJuice Pro - Pre-order next version",
      "description": "Newest version of the PureJuice Pro wireless charger, coming soon! The newest model of the PureJuice Pro boasts a 2x faster charge than the current model, and a sturdier cable with an eighteen month full warranty. We also have a battery backup to charge on-the-go, up to two full charges. Pre-order yours today!",
      "price": 36.00,
      "currency": "USD",
      "plug_type": ["B", "C", "G"],
      "voltage": ["230V", "120V"]
    }
  }
]

创建应用并展示

我们在当前的目录下打入如下的命令来创建 notebook:

$ pwd
/Users/liuxg/python/elser
$ jupyter notebook

导入包及连接到 Elasticsearch

from elasticsearch import Elasticsearch
from dotenv import load_dotenv
import os

load_dotenv()
 
openai_api_key=os.getenv('OPENAI_API_KEY')
elastic_user=os.getenv('ES_USER')
elastic_password=os.getenv('ES_PASSWORD')
elastic_endpoint=os.getenv("ES_ENDPOINT")
 
url = f"https://{elastic_user}:{elastic_password}@{elastic_endpoint}:9200"
client = Elasticsearch(url, ca_certs = "./http_ca.crt", verify_certs = True)
 
print(client.info())

索引一些测试数据

我们的客户端已设置并连接到我们的 Elastic 部署。 现在我们需要一些数据来测试 Elasticsearch 查询的基础知识。 我们将使用具有以下字段的小型产品索引:

  • name
  • description
  • price
  • currency
  • plug_type
  • voltage

运行以下命令上传一些示例数据:

import json

# Load data into a JSON object
with open('query-rules-data.json') as f:
   docs = json.load(f)

operations = []
for doc in docs:
    operations.append({"index": {"_index": "products_index", "_id": doc["id"]}})
    operations.append(doc["content"])
client.bulk(index="products_index", operations=operations, refresh=True)

我们可以在 Kibana 中进行查看:

搜索测试数据

首先,让我们搜索数据寻找 "reliable wireless charger."。

在搜索数据之前,我们将定义一些方便的函数,将来自 Elasticsearch 的原始 JSON 响应输出为更易于理解的格式。

def pretty_response(response):
    if len(response['hits']['hits']) == 0:
        print('Your search returned no results.')
    else:
        for hit in response['hits']['hits']:
            id = hit['_id']
            score = hit['_score']
            name = hit['_source']['name']
            description = hit['_source']['description']
            price = hit["_source"]["price"]
            currency = hit["_source"]["currency"]
            plug_type = hit["_source"]["plug_type"]
            voltage = hit["_source"]["voltage"]
            pretty_output = (f"\nID: {id}\nName: {name}\nDescription: {description}\nPrice: {price}\nCurrency: {currency}\nPlug type: {plug_type}\nVoltage: {voltage}\nScore: {score}")
            print(pretty_output)

def pretty_ruleset(response):
    print("Ruleset ID: " + response['ruleset_id'])
    for rule in response['rules']:
        rule_id = rule['rule_id']
        type = rule['type']
        print(f"\nRule ID: {rule_id}\n\tType: {type}\n\tCriteria:")
        criteria = rule['criteria']
        for rule_criteria in criteria:
            criteria_type = rule_criteria['type']
            metadata = rule_criteria['metadata']
            values = rule_criteria['values']
            print(f"\t\t{metadata} {criteria_type} {values}")
        ids = rule['actions']['ids']
        print(f"\tPinned ids: {ids}")

接下来,进行搜索

不使用 query rules 的正常搜索

response = client.search(index="products_index", query={
    "multi_match": {
        "query": "reliable wireless charger for iPhone",
        "fields": [ "name^5", "description" ]
    }
})

pretty_response(response)

创建 query rules

我们分别假设,我们知道我们的用户来自哪个国家/地区(可能通过 IP 地址或登录的用户帐户信息进行地理位置定位)。 现在,我们希望创建查询规则,以便当人们搜索包含短语 "wireless charger (无线充电器)" 的任何内容时,根据该信息增强无线充电器的性能。

client.query_ruleset.put(ruleset_id="promotion-rules", rules=[
    {
      "rule_id": "us-charger",
      "type": "pinned",
      "criteria": [
        {
          "type": "contains",
          "metadata": "my_query",
          "values": ["wireless charger"]
        },
        {
          "type": "exact",
          "metadata": "country",
          "values": ["us"]
        }
      ],
      "actions": {
        "ids": [
          "us1"
        ]
      }
    },
    {
      "rule_id": "uk-charger",
      "type": "pinned",
      "criteria": [
        {
          "type": "contains",
          "metadata": "my_query",
          "values": ["wireless charger"]
        },
        {
          "type": "exact",
          "metadata": "country",
          "values": ["uk"]
        }
      ],
      "actions": {
        "ids": [
          "uk1"
        ]
      }
    }
  ])

为了使这些规则匹配,必须满足以下条件之一:

  • my_query 包含字符串 "wireless charger" 并且 country "us"
  • my_query 包含字符串 "wireless charger" 并且 country 为 "uk"

我们也可以使用 API 查看我们的规则集(使用另一个 Pretty_ruleset 函数以提高可读性):

response = client.query_ruleset.get(ruleset_id="promotion-rules")
pretty_ruleset(response)
response = client.search(index="products_index", query={
      "rule_query": {
          "organic": {
              "multi_match": {
                  "query": "reliable wireless charger for iPhone",
                  "fields": [ "name^5", "description" ]
              }
          },
          "match_criteria": {
            "my_query": "reliable wireless charger for iPhone",
            "country": "us"
          },
          "ruleset_id": "promotion-rules"
      }
})

pretty_response(response)

整个 notebook 的源码可以在地址下载:https://github.com/liu-xiao-guo/semantic_search_es/blob/main/search_using_query_rules.ipynb

相关推荐
qq_273900231 分钟前
pytorch索引操作函数介绍
人工智能·pytorch·python
赵谨言8 分钟前
基于python大数据的水利数据获取及大数据服务
经验分享·python·毕业设计
HelloZheQ9 分钟前
Java与AI:构建智能应用的强大组合
java·开发语言·人工智能
Chenglin_Yu13 分钟前
Python嵌套列表的浅拷贝与深拷贝
开发语言·python
码农丁丁32 分钟前
[python3]Excel解析库-xlutils
开发语言·python·excel
硬件技术我知道35 分钟前
产品 防尘防水IP等级 划分与实验方法
网络·人工智能·嵌入式硬件·物联网·计算机视觉·硬件工程·智慧城市
数据分析能量站37 分钟前
生成模型的现状&2025年的新兴趋势
人工智能
绍兴贝贝40 分钟前
代码随想录算法训练营第五十二天|KM101.孤岛的总面积|KM102.沉没孤岛|KM103.水流问题|KM104.建造最大岛屿
数据结构·人工智能·python·算法·力扣
wang_yb40 分钟前
探索Python @dataclass的内部原理
python·databook