基于PSO粒子群优化的PID控制器参数整定算法matlab仿真

目录

1.课题概述

2.系统仿真结果

3.核心程序与模型

4.系统原理简介

[4.1 PID控制器简介](#4.1 PID控制器简介)

[4.2 PSO算法原理](#4.2 PSO算法原理)

[4.3 基于PSO的PID参数整定](#4.3 基于PSO的PID参数整定)

5.完整工程文件


1.课题概述

基于PSO粒子群优化的PID控制器参数整定。通过PSO不断的优化,使得PID控制器的控制反馈误差逐渐接近0,在完成优化迭代之后,对应的参数,即PID控制器的参数。

2.系统仿真结果

3.核心程序与模型

版本:MATLAB2022a

复制代码
............................................................
for jj = 1: Iteration
    jj

    for j=1:Npop
        %速度更新
        Vs(j,:) = 0.75*Vs(j,:) + c1*rand*(gbest(j,:) - Pops(j,:)) + c2*rand*(zbest - Pops(j,:));
............................................................
        %适应值
        yfits(j,:) = func_fitness(Pops(j,:));

        %最优更新     
        if yfits(j) < fgbest(j)
           gbest(j,:) = Pops(j,:);
           fgbest(j) = yfits(j);
        end

        %最优更新
        if yfits(j) < fzbest
           zbest  = Pops(j,:);
           fzbest = yfits(j);
        end
    end 
    %保持最优值
    y_fitness(1,jj) = fzbest;        
    Kps(1,jj)       = zbest(1);
    Kis(1,jj)       = zbest(2);
    Kds(1,jj)       = zbest(3);
end

figure
plot(y_fitness,'b-o')
legend('最优个体适应值');
xlabel('迭代次数');
ylabel('适应值');


figure
subplot(311)
plot(Kps,'-bs',...
    'LineWidth',1,...
    'MarkerSize',6,...
    'MarkerEdgeColor','k',...
    'MarkerFaceColor',[0.9,0.0,0.0]);
xlabel('迭代次数');
ylabel('参数值');
legend('Kp');
ylim([0,1100]);

subplot(312)
plot(Kis,'-mo',...
    'LineWidth',1,...
    'MarkerSize',6,...
    'MarkerEdgeColor','k',...
    'MarkerFaceColor',[0.5,0.9,0.0]);
xlabel('迭代次数');
ylabel('参数值');
legend('Ki');
ylim([0,30]);

subplot(313)
plot(Kds,'-r>',...
    'LineWidth',1,...
    'MarkerSize',6,...
    'MarkerEdgeColor','k',...
    'MarkerFaceColor',[0.9,0.9,0.0]);

xlabel('迭代次数');
ylabel('参数值');
legend('Kd');
ylim([0,500]);
27

4.系统原理简介

基于PSO(粒子群优化)算法的PID(比例-积分-微分)控制器参数整定是一种优化方法,用于自动调整PID控制器的参数(比例增益Kp、积分增益Ki和微分增益Kd),以达到最佳的控制性能。

4.1 PID控制器简介

PID控制器是一种广泛使用的控制算法,其输出由比例、积分和微分三个部分的线性组合构成。对于给定的系统误差e(t)(期望值与实际值之差),PID控制器的输出u(t)可以表示为:

其中,( K_p )、( K_i ) 和 ( K_d ) 分别是比例、积分和微分增益。

4.2 PSO算法原理

PSO是一种基于群体智能的优化算法,通过模拟鸟群觅食行为中的社会信息共享机制来寻找问题的最优解。在PSO中,每个解被视为一个"粒子",在搜索空间中以一定的速度和方向移动。每个粒子都有一个位置(代表解的值)和一个速度,以及一个由目标函数确定的适应度值。

粒子的速度和位置更新公式如下:

v(i)=v(i)w+c1rand*(pbest(i)-x(i))+c2*rand(gbest(i)-x(i))

x(i)=x(i)+v(i)

其中,( v_{i}(t) ) 和 ( x_{i}(t) ) 分别是粒子i在时刻t的速度和位置;( pbest_{i} ) 是粒子i的个体历史最优位置;( gbest ) 是整个群体的全局最优位置;( w ) 是惯性权重;( c_1 ) 和 ( c_2 ) 是学习因子;( r_1 ) 和 ( r_2 ) 是[0,1]之间的随机数。

4.3 基于PSO的PID参数整定

在基于PSO的PID参数整定中,我们将PID控制器的参数(( K_p ), ( K_i ), ( K_d ))编码为粒子的位置向量。目标函数通常与控制系统的性能指标相关,如误差积分(IAE)、时间乘以误差绝对值积分(ITAE)等。优化目标是最小化这个性能指标。算法步骤如下:

  1. 初始化粒子群,包括粒子的位置(PID参数)、速度和适应度值。
  2. 评估每个粒子的适应度值,即使用当前PID参数对控制系统进行仿真,并计算性能指标。
  3. 更新每个粒子的个体历史最优位置(pbest)和全局最优位置(gbest)。
  4. 根据PSO的速度和位置更新公式更新粒子的速度和位置。
  5. 重复步骤2-4,直到满足终止条件(如达到最大迭代次数或性能指标足够好)。
  6. 输出全局最优位置作为整定后的PID参数。

基于PSO的PID参数整定方法结合了PSO算法的全局搜索能力和PID控制器的简单有效性,为复杂控制系统的参数优化提供了一种有效手段。未来研究方向包括改进PSO算法以提高搜索效率、考虑控制系统的不确定性和非线性因素、以及将该方法应用于更广泛的工业控制场景。

5.完整工程文件

v

v

相关推荐
aini_lovee9 小时前
MATLAB基于小波技术的图像融合实现
开发语言·人工智能·matlab
3GPP仿真实验室10 小时前
【Matlab源码】6G候选波形:OFDM-IM 增强仿真平台 DM、CI
开发语言·matlab·ci/cd
rit843249913 小时前
MATLAB中Teager能量算子提取与解调信号的实现
开发语言·matlab
我找到地球的支点啦14 小时前
通信扩展——扩频技术(超级详细,附带Matlab代码)
开发语言·matlab
Dev7z1 天前
基于 MATLAB 的铣削切削力建模与仿真
开发语言·matlab
fengfuyao9851 天前
基于MATLAB的表面织构油润滑轴承故障频率提取(改进VMD算法)
人工智能·算法·matlab
机器学习之心1 天前
基于随机森林模型的轴承剩余寿命预测MATLAB实现!
算法·随机森林·matlab
rit84324991 天前
基于MATLAB的环境障碍模型构建与蚁群算法路径规划实现
开发语言·算法·matlab
hoiii1871 天前
MATLAB SGM(半全局匹配)算法实现
前端·算法·matlab
yong99901 天前
MATLAB面波频散曲线反演程序
开发语言·算法·matlab