LeetCode、746. 使用最小花费爬楼梯【简单,动态规划 线性DP】

文章目录

  • 前言
  • [LeetCode、746. 使用最小花费爬楼梯【简单,动态规划 线性DP】](#LeetCode、746. 使用最小花费爬楼梯【简单,动态规划 线性DP】)
  • 资料获取

前言

博主介绍:✌目前全网粉丝2W+,csdn博客专家、Java领域优质创作者,博客之星、阿里云平台优质作者、专注于Java后端技术领域。

涵盖技术内容:Java后端、算法、分布式微服务、中间件、前端、运维、ROS等。

博主所有博客文件目录索引:博客目录索引(持续更新)

视频平台:b站-Coder长路


LeetCode、746. 使用最小花费爬楼梯【简单,动态规划 线性DP】

题目与分类

题目链接:LeetCode、746. 使用最小花费爬楼梯【简单,动态规划 线性DP】

题目类型:动态规划/线性DP(一维DP)


思路

思路描述 :我们可以使用一个dp数组,第i个位置保存当前最耗费最小的费用,接着初始化第0、1个台阶值,对于之后的台阶位置我们都可以使用一个递推方程:d

p(i) = Math.min(dp(i - 1), dp(i - 2)) + cost[i],最终返回顶部位置也就是dp[n]即可就是最小花费答案。

复杂度分析:时间复杂度O(n);空间复杂度O(n)

java 复制代码
class Solution {

    //1000个空间
    //dp(i) = Math.min(dp(i - 1), dp(i - 2)) + cost[i]
    public int minCostClimbingStairs(int[] cost) {
        int n = cost.length;
        //定义dp数组
        int[] dp = new int[n + 1];
        //初始下标0、1位置
        dp[0] = cost[0];
        dp[1] = cost[1];
        //递推方程
        for (int i = 2; i <= n; i ++) {
            dp[i] = Math.min(dp[i - 1], dp[i - 2]) + (i < n ? cost[i] : 0);
        }
        return dp[n];
    }
}

资料获取

大家点赞、收藏、关注、评论啦~

精彩专栏推荐订阅:在下方专栏👇🏻

更多博客与资料可查看👇🏻获取联系方式👇🏻,🍅文末获取开发资源及更多资源博客获取🍅

相关推荐
电鱼智能的电小鱼10 小时前
基于电鱼 AI 工控机的智慧工地视频智能分析方案——边缘端AI检测,实现无人值守下的实时安全预警
网络·人工智能·嵌入式硬件·算法·安全·音视频
孫治AllenSun10 小时前
【算法】图相关算法和递归
windows·python·算法
格图素书11 小时前
数学建模算法案例精讲500篇-【数学建模】DBSCAN聚类算法
算法·数据挖掘·聚类
DashVector12 小时前
向量检索服务 DashVector产品计费
数据库·数据仓库·人工智能·算法·向量检索
AI纪元故事会12 小时前
【计算机视觉目标检测算法对比:R-CNN、YOLO与SSD全面解析】
人工智能·算法·目标检测·计算机视觉
夏鹏今天学习了吗12 小时前
【LeetCode热题100(59/100)】分割回文串
算法·leetcode·深度优先
卡提西亚12 小时前
C++笔记-10-循环语句
c++·笔记·算法
还是码字踏实12 小时前
基础数据结构之数组的双指针技巧之对撞指针(两端向中间):三数之和(LeetCode 15 中等题)
数据结构·算法·leetcode·双指针·对撞指针
Coovally AI模型快速验证15 小时前
当视觉语言模型接收到相互矛盾的信息时,它会相信哪个信号?
人工智能·深度学习·算法·机器学习·目标跟踪·语言模型
电院工程师15 小时前
SIMON64/128算法Verilog流水线实现(附Python实现)
python·嵌入式硬件·算法·密码学