LeetCode、746. 使用最小花费爬楼梯【简单,动态规划 线性DP】

文章目录

  • 前言
  • [LeetCode、746. 使用最小花费爬楼梯【简单,动态规划 线性DP】](#LeetCode、746. 使用最小花费爬楼梯【简单,动态规划 线性DP】)
  • 资料获取

前言

博主介绍:✌目前全网粉丝2W+,csdn博客专家、Java领域优质创作者,博客之星、阿里云平台优质作者、专注于Java后端技术领域。

涵盖技术内容:Java后端、算法、分布式微服务、中间件、前端、运维、ROS等。

博主所有博客文件目录索引:博客目录索引(持续更新)

视频平台:b站-Coder长路


LeetCode、746. 使用最小花费爬楼梯【简单,动态规划 线性DP】

题目与分类

题目链接:LeetCode、746. 使用最小花费爬楼梯【简单,动态规划 线性DP】

题目类型:动态规划/线性DP(一维DP)


思路

思路描述 :我们可以使用一个dp数组,第i个位置保存当前最耗费最小的费用,接着初始化第0、1个台阶值,对于之后的台阶位置我们都可以使用一个递推方程:d

p(i) = Math.min(dp(i - 1), dp(i - 2)) + cost[i],最终返回顶部位置也就是dp[n]即可就是最小花费答案。

复杂度分析:时间复杂度O(n);空间复杂度O(n)

java 复制代码
class Solution {

    //1000个空间
    //dp(i) = Math.min(dp(i - 1), dp(i - 2)) + cost[i]
    public int minCostClimbingStairs(int[] cost) {
        int n = cost.length;
        //定义dp数组
        int[] dp = new int[n + 1];
        //初始下标0、1位置
        dp[0] = cost[0];
        dp[1] = cost[1];
        //递推方程
        for (int i = 2; i <= n; i ++) {
            dp[i] = Math.min(dp[i - 1], dp[i - 2]) + (i < n ? cost[i] : 0);
        }
        return dp[n];
    }
}

资料获取

大家点赞、收藏、关注、评论啦~

精彩专栏推荐订阅:在下方专栏👇🏻

更多博客与资料可查看👇🏻获取联系方式👇🏻,🍅文末获取开发资源及更多资源博客获取🍅

相关推荐
import_random12 分钟前
[机器学习]xgboost的2种使用方式
算法
橘颂TA39 分钟前
【剑斩OFFER】算法的暴力美学——只出现一次的数字 ||
算法·leetcode·动态规划
想唱rap2 小时前
C++ map和set
linux·运维·服务器·开发语言·c++·算法
小欣加油3 小时前
leetcode 1018 可被5整除的二进制前缀
数据结构·c++·算法·leetcode·职场和发展
无敌最俊朗@3 小时前
链表-力扣hot100-随机链表的复制138
数据结构·leetcode·链表
WWZZ20254 小时前
快速上手大模型:深度学习12(目标检测、语义分割、序列模型)
深度学习·算法·目标检测·计算机视觉·机器人·大模型·具身智能
Andrew_Ryan4 小时前
llama.cpp Build Instructions
算法
玖剹4 小时前
递归练习题(四)
c语言·数据结构·c++·算法·leetcode·深度优先·深度优先遍历
做人不要太理性4 小时前
【Linux系统】线程的同步与互斥:核心原理、锁机制与实战代码
linux·服务器·算法