机器学习之局部最优和全局最优

(1)局部最优,就是在函数值空间的一个有限区域内寻找最小值;而全局最优,是在函数值空间整个区域寻找最小值问题。

(2)函数局部最小点是它的函数值小于或等于附近点的点,但是有可能大于较远距离的点。

(3)全局最小点是那种它的函数值小于或等于所有的可行点。

面试:你能解释一下梯度下降法及其在寻找全局最优解时的局限性吗?

  • 梯度下降法通过迭代沿着目标函数的负梯度方向更新参数,以寻找最小值。
  • 局限性:它可能会陷入局部最优,特别是在非凸函数中。此外,如果学习率设置不当,可能会导致收敛速度慢或者无法收敛。
相关推荐
罗西的思考19 小时前
[Agent] ACE(Agentic Context Engineering)和Dynamic Cheatsheet学习笔记
人工智能·机器学习
fantasy_arch19 小时前
transformer-注意力评分函数
人工智能·深度学习·transformer
逐云者12319 小时前
自动驾驶强化学习的价值对齐:奖励函数设计的艺术与科学
人工智能·机器学习·自动驾驶·自动驾驶奖励函数·奖励函数黑客防范·智能驾驶价值对齐
BreezeJuvenile19 小时前
深度学习实验一之图像特征提取和深度学习训练数据标注
人工智能·深度学习
Dev7z19 小时前
舌苔舌象分类图像数据集
人工智能·分类·数据挖掘
万俟淋曦20 小时前
【论文速递】2025年第30周(Jul-20-26)(Robotics/Embodied AI/LLM)
人工智能·深度学习·ai·机器人·论文·robotics·具身智能
高洁0120 小时前
大模型-高效优化技术全景解析:微调 量化 剪枝 梯度裁剪与蒸馏 下
人工智能·python·深度学习·神经网络·知识图谱
CoookeCola20 小时前
MovieNet(A holistic dataset for movie understanding) :面向电影理解的多模态综合数据集与工具链
数据仓库·人工智能·目标检测·计算机视觉·数据挖掘
张艾拉 Fun AI Everyday20 小时前
Gartner 2025年新兴技术成熟度曲线
人工智能
菜鸟‍20 小时前
【论文学习】大语言模型(LLM)论文
论文阅读·人工智能·学习