机器学习之局部最优和全局最优

(1)局部最优,就是在函数值空间的一个有限区域内寻找最小值;而全局最优,是在函数值空间整个区域寻找最小值问题。

(2)函数局部最小点是它的函数值小于或等于附近点的点,但是有可能大于较远距离的点。

(3)全局最小点是那种它的函数值小于或等于所有的可行点。

面试:你能解释一下梯度下降法及其在寻找全局最优解时的局限性吗?

  • 梯度下降法通过迭代沿着目标函数的负梯度方向更新参数,以寻找最小值。
  • 局限性:它可能会陷入局部最优,特别是在非凸函数中。此外,如果学习率设置不当,可能会导致收敛速度慢或者无法收敛。
相关推荐
AI_NEW_COME37 分钟前
知识库管理系统可扩展性深度测评
人工智能
海棠AI实验室1 小时前
AI的进阶之路:从机器学习到深度学习的演变(一)
人工智能·深度学习·机器学习
hunteritself1 小时前
AI Weekly『12月16-22日』:OpenAI公布o3,谷歌发布首个推理模型,GitHub Copilot免费版上线!
人工智能·gpt·chatgpt·github·openai·copilot
IT古董2 小时前
【机器学习】机器学习的基本分类-强化学习-策略梯度(Policy Gradient,PG)
人工智能·机器学习·分类
centurysee2 小时前
【最佳实践】Anthropic:Agentic系统实践案例
人工智能
mahuifa2 小时前
混合开发环境---使用编程AI辅助开发Qt
人工智能·vscode·qt·qtcreator·编程ai
四口鲸鱼爱吃盐2 小时前
Pytorch | 从零构建GoogleNet对CIFAR10进行分类
人工智能·pytorch·分类
蓝天星空2 小时前
Python调用open ai接口
人工智能·python
睡觉狂魔er2 小时前
自动驾驶控制与规划——Project 3: LQR车辆横向控制
人工智能·机器学习·自动驾驶
scan7242 小时前
LILAC采样算法
人工智能·算法·机器学习