OpenCV-38 图像金字塔

目录

一、图像金字塔

[1. 高斯金字塔](#1. 高斯金字塔)

[2. 拉普拉斯金字塔](#2. 拉普拉斯金字塔)


一、图像金字塔

图像金字塔是图像中多尺度表达的一种,最主要用于图像的分割 ,是一种以多分辨率来解释图像的有效但概念简单的结构。简单来说,图像金字塔是同一图像不同分辨率的子图集合

图像金字塔最初用于机器视觉和图像压缩,一幅图像的金字塔是一系列以金字塔状排列的分辨率逐步降低 ,且来源于同一张原始图的图像集合。其通过梯次向下采样获得,直到达到某个终止条件才停止采样金字塔的底部是待处理图像的高分辨率表示,而顶部是低分辨率的近似。我们将一层一层的图像比喻成金字塔,层级越高,则图像越小,分辨率越低。

目前有两类常用的图像金字塔

高斯金字塔(Gaussian pyramid):用于向下/降采样(向下不是方向向下,而是指的是分辨率减小),是主要的图像金字塔

拉普拉斯金字塔(Laplacian pyramid):用于从金字塔底层图像重建上层未采样图像,在数字图像处理中也即是预测残差,可以对图像进行最大程度的还原,配合高斯金字塔一起使用

1. 高斯金字塔

高斯金字塔是通过高斯平滑 和**亚采样(subsampling)**获得一系列下采样的图像。

原理如下:

GI指图像

原始图像 M * N -> 处理后图像 M/2 * N/2(奇数也可以进行,系统会自动进行类似于四舍五入的操作)

每次处理后,结果图像时原来的1/4

注意:

向下采样会丢失图像的信息

向上采样与向下采样操作相反

  1. 将图像在每个方向扩大为原来的两倍,新增的行和列以0补充。

  2. 使用先前同样的内核(乘以4)与放大后的图像卷积。获得近似值。

pyrDown(img)--- 向下采样

pyrUp(img)--- 向上采样

示例代码如下:

复制代码
import cv2
import numpy as np
lena = cv2.imread("beautiful women.png")
print(lena.shape)
# 分辨率减小,下采样
new_1 = cv2.pyrDown(lena)
new_2 = cv2.pyrDown(new_1)
print(new_1.shape)
cv2.imshow("img", lena)
cv2.imshow("img1", new_1)
cv2.imshow("img2", new_2)
# 分辨率增大,上采样
new_3 = cv2.pyrUp(lena)
cv2.imshow("img3", new_3)
cv2.waitKey(0)
cv2.destroyAllWindows()

输出结果如下:

2. 拉普拉斯金字塔

拉普拉斯金字塔没有特定的函数,只是用数学公式进行推导得到的。

将降采样之后的图像在进行上采样操作,与原图进行做差得到残差图。 为还原图像做信息准备。

即拉普拉斯金字塔最终得到的是残差。

拉普拉斯金字塔由高斯金字塔构成,没有专门的函数。

拉普拉斯金字塔图像类似图像边缘,它的大部分元素都是0, 用于图像压缩。

示例代码如下:

复制代码
import cv2
lena = cv2.imread("beautiful women.png")
# 计算第0层的拉普拉斯金字塔
# 先缩小再放大
dst = cv2.pyrDown(lena)
# 分辨率增大,上采样
dst = cv2.pyrUp(dst)
dst.resize((634, 627, 3))
print(dst.shape)
print(lena.shape)
lap0 = lena - dst
cv2.imshow("img", lap0)
#  计算第1层的拉普拉斯金字塔
dst1 = cv2.pyrDown(dst)
dst1 = cv2.pyrUp(dst1)
dst1.resize((634, 627, 3))
lap1 = dst - dst1
cv2.imshow("img1", lap1)
cv2.waitKey(0)
cv2.destroyAllWindows()

输出结果如下:

第0层拉普拉斯金字塔:

第1层拉普拉斯金字塔:

相关推荐
摆烂仙君8 分钟前
LoRA(Low-Rank Adaptation)
人工智能·计算机视觉
白白糖1 小时前
相同,对称,平衡,右视图(二叉树)
python·算法·二叉树·力扣
whoarethenext1 小时前
C/C++的OpenCV 进行轮廓提取
c语言·c++·opencv·轮廓提取
杰瑞学AI1 小时前
深度学习中的分布偏移问题及其解决方法
人工智能·深度学习·机器学习·ai
学算法的程霖1 小时前
分享|16个含源码和数据集的计算机视觉实战项目
人工智能·pytorch·深度学习·机器学习·计算机视觉·目标跟踪·研究生
学习baba酱1 小时前
关于Python+selenium+chrome编译为exe更换电脑无法打开问题
chrome·python·selenium
带电的小王1 小时前
【动手学深度学习】2.3. 线性代数
人工智能·深度学习·线性代数
Listennnn2 小时前
点云(point cloud):自动驾驶的“三维扫描图“
人工智能·机器学习·自动驾驶
土拨鼠不是老鼠2 小时前
windows 下用yolov5 训练模型 给到opencv 使用
人工智能·opencv·yolo
几道之旅2 小时前
pytdx数据获取:在线获取和离线获取(8年前的东西,还能用吗?)
python