树形dp 笔记

树的最长路径

给定一棵树,树中包含 n 个结点(编号1~n)和 n−1 条无向边,每条边都有一个权值。

现在请你找到树中的一条最长路径。

换句话说,要找到一条路径,使得使得路径两端的点的距离最远。

注意:路径中可以只包含一个点。

输入格式

第一行包含整数 n。

接下来 n−1 行,每行包含三个整数 ai,bi,ci,表示点 ai 和 bi 之间存在一条权值为 ci 的边。

输出格式

输出一个整数,表示树的最长路径的长度。

数据范围

1≤n≤10000,

1≤ai,bi≤n,

−1e5≤ci≤1e5

输入样例:
6
5 1 6
1 4 5
6 3 9
2 6 8
6 1 7
输出样例:
22

边权不为负可以用两次dfs,边权有负就要用这种了

一个点选两个能走得贡献最大的孩子,相加就是能搭在这个点上最长的直径,所有点跑一遍,找最长的那个就行

理论上一个直径上每个点算出来的值都不一样,因为dfs得有个顺序,都是父亲向孩子走得,但每条直径都一定会被算到。

cpp 复制代码
#include<bits/stdc++.h>
#define IOS ios::sync_with_stdio(0);cin.tie(0);cout.tie(0);
#define endl '\n'

using namespace std;

typedef pair<int, int> PII;
typedef long long ll;

const int N = 20010;

int pos, n;
int h[N], e[N], w[N], ne[N], idx;
int ans;

void add(int a, int b, int c)
{
    e[idx] = b, w[idx] = c, ne[idx] = h[a], h[a] = idx ++;
}

int dfs(int u, int father)
{
    int dist = 0;
    int d1 = 0, d2 = 0;

    for(int i = h[u]; i != -1; i = ne[i])
    {
        int j = e[i];
        if(j == father)continue;

        int d = dfs(j, u) + w[i];
        dist = max(dist, d);

        if(d > d1)d2 = d1, d1 = d;
        else if(d > d2)d2 = d;
    }

    ans = max(ans, d1 + d2);
    return dist;
}

int main()
{
    IOS
    cin >> n;
    memset(h, -1, sizeof h);
    for(int i = 1; i < n; i ++)
    {
        int a, b, c;
        cin >> a >> b >> c;
        add(a, b, c);
        add(b, a, c);
    }

    dfs(1, -1);

    cout << ans;

    return 0;
}

树的中心

给定一棵树,树中包含 n个结点(编号1~n)和 n−1 条无向边,每条边都有一个权值。

请你在树中找到一个点,使得该点到树中其他结点的最远距离最近。

输入格式

第一行包含整数 n。

接下来 n−1 行,每行包含三个整数 ai,bi,ci,表示点 ai 和 bi 之间存在一条权值为 ci 的边。

输出格式

输出一个整数,表示所求点到树中其他结点的最远距离。

数据范围

1≤n≤10000,

1≤ai,bi≤n,

1≤ci≤1e5

输入样例:
5 
2 1 1 
3 2 1 
4 3 1 
5 1 1
输出样例:
2

可以延续上一题的思路,尝试枚举一下每个点

最远距离除了往下走的还有一条往上走的,要在两者中取一个最大值

dist数组存往下走的最大值,up数组存往上走的最大值

第一次dfs可以求出dist数组的每个值

然后第二次dfs可以用dist数组的值退出来up的值,根节点up为0,然后就可以按dfs顺序递推出来孩子的up的值了。

cpp 复制代码
#include<bits/stdc++.h>
#define IOS ios::sync_with_stdio(0);cin.tie(0);cout.tie(0);
#define endl '\n'

using namespace std;

typedef pair<int, int> PII;
typedef long long ll;

const int N = 20010;

int pos, n;
int h[N], e[N], w[N], ne[N], idx;
int dist[N], up[N];
int ans = 2e9;

void add(int a, int b, int c)
{
	e[idx] = b, w[idx] = c, ne[idx] = h[a], h[a] = idx ++;
}

int dfs(int u, int father)
{
	int res = 0;
	for(int i = h[u]; i != -1; i = ne[i])
	{
		int j = e[i];
		if(j == father)continue;
		
		int d = dfs(j, u) + w[i];
		res = max(res, d);
	}
	dist[u] = res;
	
	return res;
}

void dfs1(int u, int father)
{
	int d1 = 0, d2 = 0;
	for(int i = h[u]; i != -1; i = ne[i])
	{
		int j = e[i];
		if(j == father)continue;
		
		int d = dist[j] + w[i];
		if(d > d1)d2 = d1, d1 = d;
		else if(d > d2)d2 = d;
	}
	
	if(up[u] > d1)d2 = d1, d1 = up[u];
	else if(up[u] > d2)d2 = up[u];
	
	for(int i = h[u]; i != -1; i = ne[i])
	{
		int j = e[i];
		if(j == father)continue;
		
		int res;
		if(dist[j] + w[i] == d1)res = d2;
		else res = d1;
		
		up[j] = res + w[i];
		int tmp = max(up[j], dist[j]);
		ans = min(ans, tmp);
		
		dfs1(j, u);
	}
}

int main()
{
	IOS
	cin >> n;
	memset(h, -1, sizeof h);
	for(int i = 1; i < n; i ++)
	{
		int a, b, c;
		cin >> a >> b >> c;
		add(a, b, c);
		add(b, a, c);
	}
	
	dfs(1, -1);
	dfs1(1, -1);
	
	ans = min(ans, dist[1]);
	cout << ans;
	
	return 0;
}

数字转换

如果一个数 x 的约数之和 y(不包括他本身)比他本身小,那么 x 可以变成 y,y 也可以变成 x。

例如,4 可以变为 3,1 可以变为 7。

限定所有数字变换在不超过 n 的正整数范围内进行,求不断进行数字变换且不出现重复数字的最多变换步数。

输入格式

输入一个正整数 n。

输出格式

输出不断进行数字变换且不出现重复数字的最多变换步数。

数据范围

1≤n≤50000

输入样例:
7
输出样例:
3
样例解释

一种方案为:4→3→1→7。

可以把每个数字看成一个点,求得问题转换为求树的直径

cpp 复制代码
#include<bits/stdc++.h>
#define IOS ios::sync_with_stdio(0);cin.tie(0);cout.tie(0);
#define endl '\n'

using namespace std;

typedef pair<int, int> PII;
typedef long long ll;

const int N = 50010;

int n;
vector<int> g[N];
int ans;
bool st[N];
int sum[N];

int get(int x)
{
	int res = 1;
	for(int i = 2; i * i <= x; i ++)
	{
		if(x % i == 0)
		{
			res += i;
			if(x / i != i)res += x / i;
		}
	}
	return res;
}

int dfs(int u, int father)
{
	int d1 = 0, d2 = 0;
	for(auto j : g[u])
	{
		if(j == father)continue;
		int d = dfs(j, u) + 1;
		if(d > d1)d2 = d1, d1 = d;
		else if(d > d2)d2 = d;
	}
	ans = max(ans, d1 + d2);
	return d1;
}

int main()
{
	IOS
	cin >> n;
	for (int i = 1; i <= n; i ++)
        for (int j = 2; j <= n / i; j ++)
            sum[i * j] += i;

    for (int i = 2; i <= n; i ++)
        if (sum[i] < i)
        {
        	g[sum[i]].push_back(i);
        	g[i].push_back(sum[i]);
		}
	
	dfs(1, -1);
	cout << ans;
	
	return 0;
}

二叉苹果树

有一棵二叉苹果树,如果树枝有分叉,一定是分两叉,即没有只有一个儿子的节点。

这棵树共 N 个节点,编号为 1 至 N,树根编号一定为 1。

我们用一根树枝两端连接的节点编号描述一根树枝的位置。

一棵苹果树的树枝太多了,需要剪枝。但是一些树枝上长有苹果,给定需要保留的树枝数量,求最多能留住多少苹果。

这里的保留是指最终与1号点连通。

输入格式

第一行包含两个整数 N 和 Q,分别表示树的节点数以及要保留的树枝数量。

接下来 N−1 行描述树枝信息,每行三个整数,前两个是它连接的节点的编号,第三个数是这根树枝上苹果数量。

输出格式

输出仅一行,表示最多能留住的苹果的数量。

数据范围

1≤Q<N≤100.

N≠1,

每根树枝上苹果不超过 30000个。

输入样例:
5 2
1 3 1
1 4 10
2 3 20
3 5 20
输出样例:
21

有依赖的背包问题的简化版

f[u][j]表示节点u,可分配树枝数量为j,最大值 (j也可理解为背包容量,但也有点不一样,这个容量不包括本身在内)

理解写在注释里了

cpp 复制代码
#include<bits/stdc++.h>
#define IOS ios::sync_with_stdio(0);cin.tie(0);cout.tie(0);
#define endl '\n'

using namespace std;

typedef pair<int, int> PII;
typedef long long ll;

const int N = 110, M = 210;

int n, m;
int h[N], e[M], w[M], ne[M], idx;
int f[N][N];

void add(int a, int b, int c)
{
	e[idx] = b, w[idx] = c, ne[idx] = h[a], h[a] = idx ++;
}

void dfs(int u, int father)
{
	for(int i = h[u]; i != -1; i = ne[i])//第i个物品组
	{
		//int j = e[i];
		if(e[i] == father)continue;
		dfs(e[i], u);
		
		for(int j = m; j >= 0; j --)//背包容量
		{
			for(int k = 0; k < j; k ++)//不同决策
			{
				f[u][j] = max(f[u][j], f[u][j - k - 1] + f[e[i]][k] + w[i]);
				//分组背包是物品组里的每个物品体积和价值不同
				//            f[u][i-1][j]    f[u][i-1][j-vk] + w
			}
		}
	}
}

int main()
{
	IOS
	memset(h, -1, sizeof h);
	cin >> n >> m;
	for(int i = 1; i < n; i ++)
	{
		int a, b, c;
		cin >> a >> b >> c;
		add(a, b, c), add(b, a, c);
	}
	
	dfs(1, -1);
	cout << f[1][m];
	
	return 0;
}

战略游戏

鲍勃喜欢玩电脑游戏,特别是战略游戏,但有时他找不到解决问题的方法,这让他很伤心。

现在他有以下问题。

他必须保护一座中世纪城市,这条城市的道路构成了一棵树。

每个节点上的士兵可以观察到所有和这个点相连的边。

他必须在节点上放置最少数量的士兵,以便他们可以观察到所有的边。

你能帮助他吗?

例如,下面的树:

只需要放置 1 名士兵(在节点 1 处),就可观察到所有的边。

输入格式

输入包含多组测试数据,每组测试数据用以描述一棵树。

对于每组测试数据,第一行包含整数 N,表示树的节点数目。

接下来 N 行,每行按如下方法描述一个节点。

节点编号:(子节点数目) 子节点 子节点 ...

节点编号从 0 到 N−1,每个节点的子节点数量均不超过 10,每个边在输入数据中只出现一次。

输出格式

对于每组测试数据,输出一个占据一行的结果,表示最少需要的士兵数。

数据范围

0<N≤1500,

一个测试点所有 N 相加之和不超过 300650。

输入样例:
4
0:(1) 1
1:(2) 2 3
2:(0)
3:(0)
5
3:(3) 1 4 2
1:(1) 0
2:(0)
0:(0)
4:(0)
输出样例:
1
2
cpp 复制代码
#include<bits/stdc++.h>
#define IOS ios::sync_with_stdio(0);cin.tie(0);cout.tie(0);
#define endl '\n'

using namespace std;

typedef pair<int, int> PII;
typedef long long ll;

const int N = 1510;

int n;
vector<int> g[N];
int d[N];
int f[N][2];

void dfs(int u)
{
	f[u][0] = 0;
	f[u][1] = 1;
	for(auto j : g[u])
	{
		dfs(j);
		f[u][0] += f[j][1];
		f[u][1] += min(f[j][0], f[j][1]);
	}
}

int main()
{
	IOS
	while(cin >> n)
	{
		for(int i = 0; i <= n; i ++)
		{
			g[i].clear();
			d[i] = 0;
			f[i][0] = f[i][1] = 0;
		}
		
		int ver1, ver2, num;
		char tmp;
		for(int i = 0; i < n; i ++)
		{
		    cin >> ver1 >>tmp >> tmp >> num >> tmp;
    		for(int i = 0; i < num; i ++)
    		{
    			cin >> ver2;
    			g[ver1].push_back(ver2);
    			d[ver2] ++;
    		}
		}
		
		int root;
		for(int i = 0; i < n; i ++)
		{
			if(!d[i])
			{
				root = i;
				break;
			}
		}
		
		dfs(root);
		cout << min(f[root][0], f[root][1]) << endl;
	}
	
	return 0;
}

皇宫看守

太平王世子事件后,陆小凤成了皇上特聘的御前一品侍卫。

皇宫各个宫殿的分布,呈一棵树的形状,宫殿可视为树中结点,两个宫殿之间如果存在道路直接相连,则该道路视为树中的一条边。

已知,在一个宫殿镇守的守卫不仅能够观察到本宫殿的状况,还能观察到与该宫殿直接存在道路相连的其他宫殿的状况。

大内保卫森严,三步一岗,五步一哨,每个宫殿都要有人全天候看守,在不同的宫殿安排看守所需的费用不同。

可是陆小凤手上的经费不足,无论如何也没法在每个宫殿都安置留守侍卫。

帮助陆小凤布置侍卫,在看守全部宫殿的前提下,使得花费的经费最少。

输入格式

输入中数据描述一棵树,描述如下:

第一行 n,表示树中结点的数目。

第二行至第 n+1 行,每行描述每个宫殿结点信息,依次为:该宫殿结点标号 i,在该宫殿安置侍卫所需的经费 k,该结点的子结点数 m,接下来 m 个数,分别是这个结点的 m 个子结点的标号 r1,r2,...,rm。

对于一个 n 个结点的树,结点标号在 1 到 n 之间,且标号不重复。

输出格式

输出一个整数,表示最少的经费。

数据范围

1≤n≤1500

输入样例:
6
1 30 3 2 3 4
2 16 2 5 6
3 5 0
4 4 0
5 11 0
6 5 0
输出样例:
25
样例解释:

在2、3、4结点安排护卫,可以观察到全部宫殿,所需经费最少,为 16 + 5 + 4 = 25。

本来以为和上一题差不多结果wa了

发现有一种情况是上一题没有的:

选1、4点也是符合要求的

f[u][0] 不放,但能被父节点看到

f[u][1] 不放,但能被子节点看到

f[u][2] 放

f[u][0]和f[u][2]都很好像,主要是如何得到f[u][1],能被子节点看到,那就选能被哪个子节点看到,其他点取min(f[u][1], f[u][2]),在所有方案中选个最小值

cpp 复制代码
#include<bits/stdc++.h>
#define IOS ios::sync_with_stdio(0);cin.tie(0);cout.tie(0);
#define endl '\n'

using namespace std;

typedef pair<int, int> PII;
typedef long long ll;

const int N = 1510;

int n;
vector<int> g[N];
int w[N], d[N];
int f[N][3];
//f[u][0] 不放,但能被父节点看到
//f[u][1] 不放,但能被子节点看到
//f[u][2] 放 

void dfs(int u)
{
	f[u][0] = 0, f[u][1] = 0, f[u][2] = w[u];
	int sum = 0;
	for(auto j : g[u])
	{
		dfs(j);
		
		f[u][0] += min(f[j][1], f[j][2]);
		sum += min(f[j][1], f[j][2]);
		f[u][2] += min(min(f[j][0], f[j][1]), f[j][2]);
	}
	
	int res = 2e9;
	for(auto j : g[u])
	{
		res = min(res, sum + f[j][2] - min(f[j][1], f[j][2]));
	}
	f[u][1] = res;
}

int main()
{
	IOS
	cin >> n;
	for(int i = 0; i < n; i ++)
	{
		int id, val, num;
		cin >> id >> val >> num;
		w[id] = val;
		for(int j = 0; j < num; j ++)
		{
			int x;
			cin >> x;
			d[x] ++;
			g[id].push_back(x);
		}
	}
	
	int root;
	for(int i = 1; i <= n; i ++)
	{
		if(!d[i])
		{
			root = i;
			break;
		}
	}
	
	dfs(root);
	cout << min(f[root][1], f[root][2]);
	
	return 0;
}
相关推荐
chenziang12 小时前
leetcode hot100 环形链表2
算法·leetcode·链表
Captain823Jack3 小时前
nlp新词发现——浅析 TF·IDF
人工智能·python·深度学习·神经网络·算法·自然语言处理
Captain823Jack4 小时前
w04_nlp大模型训练·中文分词
人工智能·python·深度学习·神经网络·算法·自然语言处理·中文分词
Aileen_0v04 小时前
【AI驱动的数据结构:包装类的艺术与科学】
linux·数据结构·人工智能·笔记·网络协议·tcp/ip·whisper
是小胡嘛4 小时前
数据结构之旅:红黑树如何驱动 Set 和 Map
数据结构·算法
m0_748255024 小时前
前端常用算法集合
前端·算法
呆呆的猫5 小时前
【LeetCode】227、基本计算器 II
算法·leetcode·职场和发展
Tisfy5 小时前
LeetCode 1705.吃苹果的最大数目:贪心(优先队列) - 清晰题解
算法·leetcode·优先队列·贪心·
余额不足121385 小时前
C语言基础十六:枚举、c语言中文件的读写操作
linux·c语言·算法
yuanManGan6 小时前
数据结构漫游记:静态链表的实现(CPP)
数据结构·链表