回归预测模型:MATLAB神经网络回归模型

1.神经网络回归模型的基本原理

神经网络是一种由节点(或称为"神经元")和边组成的网络结构,用于模拟人脑分析和处理信息的方式。在回归问题中,神经网络旨在预测一个连续值的输出,基于给定的一组输入特征。

一个基本的神经网络包括输入层、隐藏层(一个或多个)、和输出层。每个层包含若干神经元,相邻层之间的神经元通过权重连接。网络通过调整这些权重,来学习输入数据与输出数据之间的关系。

在训练过程中,神经网络使用一种称为反向传播的算法,通过迭代地调整权重,以最小化预测值和实际值之间的差异(例如,使用均方误差作为损失函数)。

2.实例分析

假设使用波士顿房价数据集,其中包含波士顿地区房屋价格的中位数,以及与房价相关的各种特征(如犯罪率、房间数等)。

示例代码:

matlab 复制代码
% 加载数据集
load boston.mat % 假设数据集文件名为 boston.mat,包含X和Y

% 创建神经网络
net = feedforwardnet(10); % 选择一个简单的网络结构,包含一个隐藏层和10个神经元

% 配置训练参数
net.divideParam.trainRatio = 0.7; % 70%的数据用于训练
net.divideParam.valRatio = 0.15; % 15%的数据用于验证
net.divideParam.testRatio = 0.15; % 15%的数据用于测试

% 训练神经网络
[net, tr] = train(net, X', Y');

% 使用训练好的网络进行预测
Y_pred = net(X');

% 计算并显示性能指标,例如均方误差(MSE)
mse = perform(net, Y', Y_pred);
disp(['MSE: ', num2str(mse)]);

% 绘制实际值与预测值
figure;
plot(Y', Y_pred, 'bo');
hold on;
plot([min(Y'), max(Y')], [min(Y'), max(Y')], 'r-'); % 绘制理想情况下的对角线
xlabel('Actual Prices');
ylabel('Predicted Prices');
title('Comparison of Actual and Predicted Prices');
legend('Predicted vs. Actual', 'Ideal', 'Location', 'Best');
grid on;
相关推荐
米饭的白色42 分钟前
matlab 中 `对数坐标` 画图下的 `hold on` 位置对坐标轴刻度的影响
开发语言·matlab
LaughingZhu6 小时前
Product Hunt 每日热榜 | 2026-01-23
人工智能·经验分享·深度学习·神经网络·产品运营
deep_drink6 小时前
【论文精读(二十三)】PointMamba:点云界的“凌波微步”,线性复杂度终结 Transformer 霸权(NeurIPS 2024)
人工智能·深度学习·神经网络·transformer·point cloud
TTGGGFF7 小时前
控制系统建模仿真(八):PID 控制器的参数整定
matlab·simulink·pid
ytttr8739 小时前
基于MATLAB实现时间序列小波相干性分析
开发语言·matlab
岑梓铭10 小时前
YOLO深度学习(计算机视觉)一很有用!!(进一步加快训练速度的操作)
人工智能·深度学习·神经网络·yolo·计算机视觉
2401_8414956410 小时前
深度卷积生成对抗网络(DCGAN)
人工智能·python·深度学习·神经网络·机器学习·生成对抗网络·深度卷积生成对抗网络
翱翔的苍鹰10 小时前
通俗讲解在中文 NLP中要用 jieba 分词,以及它和 循环神经网络(RNN) 的关系。
人工智能·pytorch·rnn·神经网络·自然语言处理
hoiii18712 小时前
基于MATLAB的Kriging代理模型实现与优化
开发语言·matlab
咋吃都不胖lyh12 小时前
GBDT 回归任务生成过程(逐步计算演示)
人工智能·数据挖掘·回归