回归预测模型:MATLAB神经网络回归模型

1.神经网络回归模型的基本原理

神经网络是一种由节点(或称为"神经元")和边组成的网络结构,用于模拟人脑分析和处理信息的方式。在回归问题中,神经网络旨在预测一个连续值的输出,基于给定的一组输入特征。

一个基本的神经网络包括输入层、隐藏层(一个或多个)、和输出层。每个层包含若干神经元,相邻层之间的神经元通过权重连接。网络通过调整这些权重,来学习输入数据与输出数据之间的关系。

在训练过程中,神经网络使用一种称为反向传播的算法,通过迭代地调整权重,以最小化预测值和实际值之间的差异(例如,使用均方误差作为损失函数)。

2.实例分析

假设使用波士顿房价数据集,其中包含波士顿地区房屋价格的中位数,以及与房价相关的各种特征(如犯罪率、房间数等)。

示例代码:

matlab 复制代码
% 加载数据集
load boston.mat % 假设数据集文件名为 boston.mat,包含X和Y

% 创建神经网络
net = feedforwardnet(10); % 选择一个简单的网络结构,包含一个隐藏层和10个神经元

% 配置训练参数
net.divideParam.trainRatio = 0.7; % 70%的数据用于训练
net.divideParam.valRatio = 0.15; % 15%的数据用于验证
net.divideParam.testRatio = 0.15; % 15%的数据用于测试

% 训练神经网络
[net, tr] = train(net, X', Y');

% 使用训练好的网络进行预测
Y_pred = net(X');

% 计算并显示性能指标,例如均方误差(MSE)
mse = perform(net, Y', Y_pred);
disp(['MSE: ', num2str(mse)]);

% 绘制实际值与预测值
figure;
plot(Y', Y_pred, 'bo');
hold on;
plot([min(Y'), max(Y')], [min(Y'), max(Y')], 'r-'); % 绘制理想情况下的对角线
xlabel('Actual Prices');
ylabel('Predicted Prices');
title('Comparison of Actual and Predicted Prices');
legend('Predicted vs. Actual', 'Ideal', 'Location', 'Best');
grid on;
相关推荐
拉普拉斯妖1083 分钟前
DAY41 简单CNN
人工智能·神经网络·cnn
fengfuyao9852 小时前
基于Matlab的压缩感知梯度投影重构算法实现方案
算法·matlab·重构
e***98572 小时前
MATLAB高效算法实战:从基础到进阶优化
开发语言·算法·matlab
yong99903 小时前
信号分形维数计算方法与MATLAB实现
开发语言·人工智能·matlab
知乎的哥廷根数学学派3 小时前
基于物理约束与多源知识融合的浅基础极限承载力智能预测与工程决策优化(以模拟信号为例,Pytorch)
人工智能·pytorch·python·深度学习·神经网络·机器学习
可触的未来,发芽的智生4 小时前
完全原生态思考:从零学习的本质探索→刻石头
javascript·人工智能·python·神经网络·程序人生
qianbo_insist5 小时前
基于APAP算法的图像和视频拼接
算法·数学建模·图像拼接
知乎的哥廷根数学学派5 小时前
基于高阶统计量引导的小波自适应块阈值地震信号降噪算法(MATLAB)
网络·人工智能·pytorch·深度学习·算法·机器学习·matlab
Yeats_Liao5 小时前
昇腾910B与DeepSeek:国产算力与开源模型的架构适配分析
人工智能·python·深度学习·神经网络·机器学习·架构·开源
cici158745 小时前
基于光流场的Demons算法MATLAB实现
人工智能·算法·matlab