回归预测模型:MATLAB神经网络回归模型

1.神经网络回归模型的基本原理

神经网络是一种由节点(或称为"神经元")和边组成的网络结构,用于模拟人脑分析和处理信息的方式。在回归问题中,神经网络旨在预测一个连续值的输出,基于给定的一组输入特征。

一个基本的神经网络包括输入层、隐藏层(一个或多个)、和输出层。每个层包含若干神经元,相邻层之间的神经元通过权重连接。网络通过调整这些权重,来学习输入数据与输出数据之间的关系。

在训练过程中,神经网络使用一种称为反向传播的算法,通过迭代地调整权重,以最小化预测值和实际值之间的差异(例如,使用均方误差作为损失函数)。

2.实例分析

假设使用波士顿房价数据集,其中包含波士顿地区房屋价格的中位数,以及与房价相关的各种特征(如犯罪率、房间数等)。

示例代码:

matlab 复制代码
% 加载数据集
load boston.mat % 假设数据集文件名为 boston.mat,包含X和Y

% 创建神经网络
net = feedforwardnet(10); % 选择一个简单的网络结构,包含一个隐藏层和10个神经元

% 配置训练参数
net.divideParam.trainRatio = 0.7; % 70%的数据用于训练
net.divideParam.valRatio = 0.15; % 15%的数据用于验证
net.divideParam.testRatio = 0.15; % 15%的数据用于测试

% 训练神经网络
[net, tr] = train(net, X', Y');

% 使用训练好的网络进行预测
Y_pred = net(X');

% 计算并显示性能指标,例如均方误差(MSE)
mse = perform(net, Y', Y_pred);
disp(['MSE: ', num2str(mse)]);

% 绘制实际值与预测值
figure;
plot(Y', Y_pred, 'bo');
hold on;
plot([min(Y'), max(Y')], [min(Y'), max(Y')], 'r-'); % 绘制理想情况下的对角线
xlabel('Actual Prices');
ylabel('Predicted Prices');
title('Comparison of Actual and Predicted Prices');
legend('Predicted vs. Actual', 'Ideal', 'Location', 'Best');
grid on;
相关推荐
Cathy Bryant11 小时前
大模型损失函数(二):KL散度(Kullback-Leibler divergence)
笔记·神经网络·机器学习·数学建模·transformer
高洁0113 小时前
大模型-高效优化技术全景解析:微调 量化 剪枝 梯度裁剪与蒸馏 下
人工智能·python·深度学习·神经网络·知识图谱
材料科学研究18 小时前
深度学习物理神经网络(PINN)!
python·深度学习·神经网络·pinn
星际棋手18 小时前
【AI】一文说清楚神经网络、机器学习、专家系统
人工智能·神经网络·机器学习
CappuccinoRose19 小时前
MATLAB学习文档(二十四)
学习·数学建模·matlab·数据可视化
可触的未来,发芽的智生20 小时前
触摸未来2025-10-18:生成文字的小宇宙矩阵溯源
人工智能·python·神经网络·程序人生·自然语言处理
茜茜西西CeCe1 天前
数字图像处理-图像增强(2)
人工智能·算法·计算机视觉·matlab·数字图像处理·图像增强·陷波滤波器
无风听海1 天前
神经网络之链式法则
人工智能·深度学习·神经网络
Evand J1 天前
【MATLAB例程】基于USBL和DVL的线性回归误差补偿,对USBL和DVL导航数据进行相互补偿,提高定位精度,附代码下载链接
开发语言·matlab·线性回归·水下定位·usbl·dvl
小老鼠不吃猫1 天前
MathType延时使用
数学建模