回归预测模型:MATLAB神经网络回归模型

1.神经网络回归模型的基本原理

神经网络是一种由节点(或称为"神经元")和边组成的网络结构,用于模拟人脑分析和处理信息的方式。在回归问题中,神经网络旨在预测一个连续值的输出,基于给定的一组输入特征。

一个基本的神经网络包括输入层、隐藏层(一个或多个)、和输出层。每个层包含若干神经元,相邻层之间的神经元通过权重连接。网络通过调整这些权重,来学习输入数据与输出数据之间的关系。

在训练过程中,神经网络使用一种称为反向传播的算法,通过迭代地调整权重,以最小化预测值和实际值之间的差异(例如,使用均方误差作为损失函数)。

2.实例分析

假设使用波士顿房价数据集,其中包含波士顿地区房屋价格的中位数,以及与房价相关的各种特征(如犯罪率、房间数等)。

示例代码:

matlab 复制代码
% 加载数据集
load boston.mat % 假设数据集文件名为 boston.mat,包含X和Y

% 创建神经网络
net = feedforwardnet(10); % 选择一个简单的网络结构,包含一个隐藏层和10个神经元

% 配置训练参数
net.divideParam.trainRatio = 0.7; % 70%的数据用于训练
net.divideParam.valRatio = 0.15; % 15%的数据用于验证
net.divideParam.testRatio = 0.15; % 15%的数据用于测试

% 训练神经网络
[net, tr] = train(net, X', Y');

% 使用训练好的网络进行预测
Y_pred = net(X');

% 计算并显示性能指标,例如均方误差(MSE)
mse = perform(net, Y', Y_pred);
disp(['MSE: ', num2str(mse)]);

% 绘制实际值与预测值
figure;
plot(Y', Y_pred, 'bo');
hold on;
plot([min(Y'), max(Y')], [min(Y'), max(Y')], 'r-'); % 绘制理想情况下的对角线
xlabel('Actual Prices');
ylabel('Predicted Prices');
title('Comparison of Actual and Predicted Prices');
legend('Predicted vs. Actual', 'Ideal', 'Location', 'Best');
grid on;
相关推荐
田里的水稻1 天前
FA_规划和控制(PC)-瑞德斯.谢普路径规划(RSPP))
人工智能·算法·数学建模·机器人·自动驾驶
vQFQJbUiJ1 天前
迅达CADI调试软件3.11.3及3.10版本 - 5系GX与7系TX操作说明
神经网络
dracula0001 天前
Simulink建模助手系列-4【批量添加信号线】
matlab
LaughingZhu1 天前
Product Hunt 每日热榜 | 2026-02-15
人工智能·经验分享·深度学习·神经网络·产品运营
dracula0001 天前
Simulink建模助手系列-5【批量对齐模块】
matlab
冰西瓜6001 天前
深度学习的数学原理(九)—— 神经网络为什么能学习特征?
深度学习·神经网络·学习
志栋智能1 天前
AI驱动的带内自动化巡检:编织IT生态的“智慧神经网络”
大数据·运维·网络·人工智能·神经网络·自动化
Clarence Liu1 天前
用大白话讲解人工智能(7) 卷积神经网络(CNN):AI怎么“看懂“图片
人工智能·神经网络·cnn
Clarence Liu2 天前
用大白话讲解人工智能(4) Softmax回归:AI如何给选项“打分排序“
人工智能·数据挖掘·回归
过期的秋刀鱼!2 天前
神经网络-代码中的推理
人工智能·深度学习·神经网络