回归预测模型:MATLAB神经网络回归模型

1.神经网络回归模型的基本原理

神经网络是一种由节点(或称为"神经元")和边组成的网络结构,用于模拟人脑分析和处理信息的方式。在回归问题中,神经网络旨在预测一个连续值的输出,基于给定的一组输入特征。

一个基本的神经网络包括输入层、隐藏层(一个或多个)、和输出层。每个层包含若干神经元,相邻层之间的神经元通过权重连接。网络通过调整这些权重,来学习输入数据与输出数据之间的关系。

在训练过程中,神经网络使用一种称为反向传播的算法,通过迭代地调整权重,以最小化预测值和实际值之间的差异(例如,使用均方误差作为损失函数)。

2.实例分析

假设使用波士顿房价数据集,其中包含波士顿地区房屋价格的中位数,以及与房价相关的各种特征(如犯罪率、房间数等)。

示例代码:

matlab 复制代码
% 加载数据集
load boston.mat % 假设数据集文件名为 boston.mat,包含X和Y

% 创建神经网络
net = feedforwardnet(10); % 选择一个简单的网络结构,包含一个隐藏层和10个神经元

% 配置训练参数
net.divideParam.trainRatio = 0.7; % 70%的数据用于训练
net.divideParam.valRatio = 0.15; % 15%的数据用于验证
net.divideParam.testRatio = 0.15; % 15%的数据用于测试

% 训练神经网络
[net, tr] = train(net, X', Y');

% 使用训练好的网络进行预测
Y_pred = net(X');

% 计算并显示性能指标,例如均方误差(MSE)
mse = perform(net, Y', Y_pred);
disp(['MSE: ', num2str(mse)]);

% 绘制实际值与预测值
figure;
plot(Y', Y_pred, 'bo');
hold on;
plot([min(Y'), max(Y')], [min(Y'), max(Y')], 'r-'); % 绘制理想情况下的对角线
xlabel('Actual Prices');
ylabel('Predicted Prices');
title('Comparison of Actual and Predicted Prices');
legend('Predicted vs. Actual', 'Ideal', 'Location', 'Best');
grid on;
相关推荐
sunfove几秒前
拥抱不确定性:使用 PyTorch 构建贝叶斯神经网络 (BNN)
人工智能·pytorch·神经网络
一招定胜负10 分钟前
仅通过提示词用豆包实现项目:爬虫+神经网络对目标图片分类
爬虫·神经网络·分类
小郭团队12 小时前
1_6_五段式SVPWM (传统算法反正切+DPWM2)算法理论与 MATLAB 实现详解
嵌入式硬件·算法·matlab·dsp开发
小郭团队12 小时前
1_7_五段式SVPWM (传统算法反正切+DPWM3)算法理论与 MATLAB 实现详解
开发语言·嵌入式硬件·算法·matlab·dsp开发
绝不原创的飞龙13 小时前
K 最近邻回归器,解释:带代码示例的视觉指南
人工智能·数据挖掘·回归
飞Link14 小时前
【论文笔记】《Deep Learning for Time Series Anomaly Detection: A Survey》
rnn·深度学习·神经网络·cnn·transformer
陈天伟教授15 小时前
人工智能应用-机器视觉:绘画大师 04.基于风格迁移的绘画大师
人工智能·神经网络·数码相机·生成对抗网络·dnn
翱翔的苍鹰16 小时前
通俗、生动的方式 来讲解“卷积神经网络(CNN)
人工智能·神经网络·cnn
aini_lovee16 小时前
严格耦合波(RCWA)方法计算麦克斯韦方程数值解的MATLAB实现
数据结构·算法·matlab
Cigaretter716 小时前
Day 51 神经网络调参指南
人工智能·深度学习·神经网络