移动机器人激光SLAM导航(五):Cartographer SLAM 篇

参考

1. Cartographer 安装

1.1 前置条件

1.2 依赖库安装

1.3 编译

本文只编译 cartographer_ros,以下为同时开三个终端操作

powershell 复制代码
$ mkdir -p cartographer_ws/src
powershell 复制代码
$ cd ~
$ git clone https://github.com/xiangli0608/cartographer_detailed_comments_ws
$ mv ~/cartographer_detailed_comments_ws/src/cartographer_ros ~/cartographer_ws/src
powershell 复制代码
$ cd ~/cartographer_ws
$ catkin_make

2. Cartographer 运行

2.1 数据集下载

2.2 配置文件

  • lx_rs16_2d_outdoor.launch

    xml 复制代码
    <launch>
      <!-- bag 的地址与名称(根据自己情况修改,建议使用绝对路径) -->
      <arg name="bag_filename" default="/home/yue/bag/rslidar-outdoor-gps.bag"/>
    
      <!-- 使用 bag 的时间戳 -->
      <param name="/use_sim_time" value="true" />
    
      <!-- 启动 cartographer -->
      <node name="cartographer_node" pkg="cartographer_ros"
          type="cartographer_node" args="
              -configuration_directory $(find cartographer_ros)/configuration_files
              -configuration_basename lx_rs16_2d_outdoor.lua"
          output="screen">
        <remap from="points2" to="rslidar_points" />
        <remap from="scan" to="front_scan" />
        <remap from="odom" to="odom_scout" />
        <remap from="imu" to="imu" />
      </node>
    
      <!-- 生成 ros 格式的地图 -->
      <node name="cartographer_occupancy_grid_node" pkg="cartographer_ros"
          type="cartographer_occupancy_grid_node" args="-resolution 0.05" />
    
      <!-- 启动 rviz -->
      <node name="rviz" pkg="rviz" type="rviz" required="true"
          args="-d $(find cartographer_ros)/configuration_files/lx_2d.rviz" />
    
      <!-- 启动 rosbag -->
      <node name="playbag" pkg="rosbag" type="play"
          args="--clock $(arg bag_filename)" />
    
    </launch>
  • lx_rs16_2d_outdoor.lua

    lua 复制代码
    include "map_builder.lua"
    include "trajectory_builder.lua"
    
    options = {
      map_builder = MAP_BUILDER,               -- map_builder.lua的配置信息
      trajectory_builder = TRAJECTORY_BUILDER, -- trajectory_builder.lua的配置信息
      
      map_frame = "map",                       -- 地图坐标系的名字
      tracking_frame = "imu_link",             -- 将所有传感器数据转换到这个坐标系下
      published_frame = "footprint",           -- tf: map -> footprint
      odom_frame = "odom",                     -- 里程计的坐标系名字
      provide_odom_frame = false,              -- 是否提供odom的tf,如果为true,则tf树为map->odom->footprint
                                                -- 如果为false tf树为map->footprint
      publish_frame_projected_to_2d = false,   -- 是否将坐标系投影到平面上
      --use_pose_extrapolator = false,           -- 发布tf时是使用pose_extrapolator的位姿还是前端计算出来的位姿
    
      use_odometry = false,                    -- 是否使用里程计,如果使用要求一定要有odom的tf
      use_nav_sat = false,                     -- 是否使用gps
      use_landmarks = false,                   -- 是否使用landmark
      num_laser_scans = 0,                     -- 是否使用单线激光数据
      num_multi_echo_laser_scans = 0,          -- 是否使用multi_echo_laser_scans数据
      num_subdivisions_per_laser_scan = 1,     -- 1帧数据被分成几次处理,一般为1
      num_point_clouds = 1,                    -- 是否使用点云数据
      
      lookup_transform_timeout_sec = 0.2,      -- 查找tf时的超时时间
      submap_publish_period_sec = 0.3,         -- 发布数据的时间间隔
      pose_publish_period_sec = 5e-3,
      trajectory_publish_period_sec = 30e-3,
    
      rangefinder_sampling_ratio = 1.,         -- 传感器数据的采样频率
      odometry_sampling_ratio = 1.,
      fixed_frame_pose_sampling_ratio = 1.,
      imu_sampling_ratio = 1.,
      landmarks_sampling_ratio = 1.,
    }
    
    MAP_BUILDER.use_trajectory_builder_2d = true
    
    TRAJECTORY_BUILDER_2D.use_imu_data = true
    TRAJECTORY_BUILDER_2D.min_range = 0.3
    TRAJECTORY_BUILDER_2D.max_range = 100.
    TRAJECTORY_BUILDER_2D.min_z = 0.2
    --TRAJECTORY_BUILDER_2D.max_z = 1.4
    --TRAJECTORY_BUILDER_2D.voxel_filter_size = 0.02
    
    --TRAJECTORY_BUILDER_2D.adaptive_voxel_filter.max_length = 0.5
    --TRAJECTORY_BUILDER_2D.adaptive_voxel_filter.min_num_points = 200.
    --TRAJECTORY_BUILDER_2D.adaptive_voxel_filter.max_range = 50.
    
    --TRAJECTORY_BUILDER_2D.loop_closure_adaptive_voxel_filter.max_length = 0.9
    --TRAJECTORY_BUILDER_2D.loop_closure_adaptive_voxel_filter.min_num_points = 100
    --TRAJECTORY_BUILDER_2D.loop_closure_adaptive_voxel_filter.max_range = 50.
    
    TRAJECTORY_BUILDER_2D.use_online_correlative_scan_matching = false
    TRAJECTORY_BUILDER_2D.ceres_scan_matcher.occupied_space_weight = 1.
    TRAJECTORY_BUILDER_2D.ceres_scan_matcher.translation_weight = 1.
    TRAJECTORY_BUILDER_2D.ceres_scan_matcher.rotation_weight = 1.
    --TRAJECTORY_BUILDER_2D.ceres_scan_matcher.ceres_solver_options.max_num_iterations = 12
    
    --TRAJECTORY_BUILDER_2D.motion_filter.max_distance_meters = 0.1
    --TRAJECTORY_BUILDER_2D.motion_filter.max_angle_radians = 0.004
    --TRAJECTORY_BUILDER_2D.imu_gravity_time_constant = 1.
    
    TRAJECTORY_BUILDER_2D.submaps.num_range_data = 80.
    TRAJECTORY_BUILDER_2D.submaps.grid_options_2d.resolution = 0.1
    
    POSE_GRAPH.optimize_every_n_nodes = 160.
    POSE_GRAPH.constraint_builder.sampling_ratio = 0.3
    POSE_GRAPH.constraint_builder.max_constraint_distance = 15.
    POSE_GRAPH.constraint_builder.min_score = 0.48
    POSE_GRAPH.constraint_builder.global_localization_min_score = 0.60
    
    return options
  • trajectory_builder_2d.lua

    lua 复制代码
    TRAJECTORY_BUILDER_2D = {
      use_imu_data = true,            -- 是否使用imu数据
      min_range = 0.,                 -- 雷达数据的最远最近滤波, 保存中间值
      max_range = 30.,
      min_z = -0.8,                   -- 雷达数据的最高与最低的过滤, 保存中间值
      max_z = 2.,
      missing_data_ray_length = 5.,   -- 超过最大距离范围的数据点用这个距离代替
      num_accumulated_range_data = 1, -- 几帧有效的点云数据进行一次扫描匹配
      voxel_filter_size = 0.025,      -- 体素滤波的立方体的边长
    
      -- 使用固定的voxel滤波之后, 再使用自适应体素滤波器
      -- 体素滤波器 用于生成稀疏点云 以进行 扫描匹配
      adaptive_voxel_filter = {
        max_length = 0.5,             -- 尝试确定最佳的立方体边长, 边长最大为0.5
        min_num_points = 200,         -- 如果存在 较多点 并且大于'min_num_points', 则减小体素长度以尝试获得该最小点数
        max_range = 50.,              -- 距远离原点超过max_range 的点被移除
      },
    
      -- 闭环检测的自适应体素滤波器, 用于生成稀疏点云 以进行 闭环检测
      loop_closure_adaptive_voxel_filter = {
        max_length = 0.9,
        min_num_points = 100,
        max_range = 50.,
      },
    
      -- 是否使用 real_time_correlative_scan_matcher 为ceres提供先验信息
      -- 计算复杂度高 , 但是很鲁棒 , 在odom或者imu不准时依然能达到很好的效果
      use_online_correlative_scan_matching = false,
      real_time_correlative_scan_matcher = {
        linear_search_window = 0.1,             -- 线性搜索窗口的大小
        angular_search_window = math.rad(20.),  -- 角度搜索窗口的大小
        translation_delta_cost_weight = 1e-1,   -- 用于计算各部分score的权重
        rotation_delta_cost_weight = 1e-1,
      },
    
      -- ceres匹配的一些配置参数
      ceres_scan_matcher = {
        occupied_space_weight = 1.,
        translation_weight = 10.,
        rotation_weight = 40.,
        ceres_solver_options = {
          use_nonmonotonic_steps = false,
          max_num_iterations = 20,
          num_threads = 1,
        },
      },
    
      -- 为了防止子图里插入太多数据, 在插入子图之前之前对数据进行过滤
      motion_filter = {
        max_time_seconds = 5.,
        max_distance_meters = 0.2,
        max_angle_radians = math.rad(1.),
      },
    
      -- TODO(schwoere,wohe): Remove this constant. This is only kept for ROS.
      imu_gravity_time_constant = 10.,
    
      -- 位姿预测器
      pose_extrapolator = {
        use_imu_based = false,
        constant_velocity = {
          imu_gravity_time_constant = 10.,
          pose_queue_duration = 0.001,
        },
        imu_based = {
          pose_queue_duration = 5.,
          gravity_constant = 9.806,
          pose_translation_weight = 1.,
          pose_rotation_weight = 1.,
          imu_acceleration_weight = 1.,
          imu_rotation_weight = 1.,
          odometry_translation_weight = 1.,
          odometry_rotation_weight = 1.,
          solver_options = {
            use_nonmonotonic_steps = false;
            max_num_iterations = 10;
            num_threads = 1;
          },
        },
      },
    
      -- 子图相关的一些配置
      submaps = {
        num_range_data = 90,          -- 一个子图里插入雷达数据的个数的一半
        grid_options_2d = {
          grid_type = "PROBABILITY_GRID", -- 地图的种类, 还可以是tsdf格式
          resolution = 0.05,
        },
        range_data_inserter = {
          range_data_inserter_type = "PROBABILITY_GRID_INSERTER_2D",
          -- 概率占用栅格地图的一些配置
          probability_grid_range_data_inserter = {
            insert_free_space = true,
            hit_probability = 0.55,
            miss_probability = 0.49,
          },
          -- tsdf地图的一些配置
          tsdf_range_data_inserter = {
            truncation_distance = 0.3,
            maximum_weight = 10.,
            update_free_space = false,
            normal_estimation_options = {
              num_normal_samples = 4,
              sample_radius = 0.5,
            },
            project_sdf_distance_to_scan_normal = true,
            update_weight_range_exponent = 0,
            update_weight_angle_scan_normal_to_ray_kernel_bandwidth = 0.5,
            update_weight_distance_cell_to_hit_kernel_bandwidth = 0.5,
          },
        },
      },
    }
  • pose_graph.lua

    lua 复制代码
    POSE_GRAPH = {
      -- 每隔多少个节点执行一次后端优化
      optimize_every_n_nodes = 90,
    
      -- 约束构建的相关参数
      constraint_builder = {
        sampling_ratio = 0.3,                 -- 对局部子图进行回环检测时的计算频率, 数值越大, 计算次数越多
        max_constraint_distance = 15.,        -- 对局部子图进行回环检测时能成为约束的最大距离
        min_score = 0.55,                     -- 对局部子图进行回环检测时的最低分数阈值
        global_localization_min_score = 0.6,  -- 对整体子图进行回环检测时的最低分数阈值
        loop_closure_translation_weight = 1.1e4,
        loop_closure_rotation_weight = 1e5,
        log_matches = true,                   -- 打印约束计算的log
        
        -- 基于分支定界算法的2d粗匹配器
        fast_correlative_scan_matcher = {
          linear_search_window = 7.,
          angular_search_window = math.rad(30.),
          branch_and_bound_depth = 7,
        },
    
        -- 基于ceres的2d精匹配器
        ceres_scan_matcher = {
          occupied_space_weight = 20.,
          translation_weight = 10.,
          rotation_weight = 1.,
          ceres_solver_options = {
            use_nonmonotonic_steps = true,
            max_num_iterations = 10,
            num_threads = 1,
          },
        },
    
        -- 基于分支定界算法的3d粗匹配器
        fast_correlative_scan_matcher_3d = {
          branch_and_bound_depth = 8,
          full_resolution_depth = 3,
          min_rotational_score = 0.77,
          min_low_resolution_score = 0.55,
          linear_xy_search_window = 5.,
          linear_z_search_window = 1.,
          angular_search_window = math.rad(15.),
        },
    
        -- 基于ceres的3d精匹配器
        ceres_scan_matcher_3d = {
          occupied_space_weight_0 = 5.,
          occupied_space_weight_1 = 30.,
          translation_weight = 10.,
          rotation_weight = 1.,
          only_optimize_yaw = false,
          ceres_solver_options = {
            use_nonmonotonic_steps = false,
            max_num_iterations = 10,
            num_threads = 1,
          },
        },
      },
    
      matcher_translation_weight = 5e2,
      matcher_rotation_weight = 1.6e3,
    
      -- 优化残差方程的相关参数
      optimization_problem = {
        huber_scale = 1e1,                -- 值越大,(潜在)异常值的影响就越大
        acceleration_weight = 1.1e2,      -- 3d里imu的线加速度的权重
        rotation_weight = 1.6e4,          -- 3d里imu的旋转的权重
        
        -- 前端结果残差的权重
        local_slam_pose_translation_weight = 1e5,
        local_slam_pose_rotation_weight = 1e5,
        -- 里程计残差的权重
        odometry_translation_weight = 1e5,
        odometry_rotation_weight = 1e5,
        -- gps残差的权重
        fixed_frame_pose_translation_weight = 1e1,
        fixed_frame_pose_rotation_weight = 1e2,
        fixed_frame_pose_use_tolerant_loss = false,
        fixed_frame_pose_tolerant_loss_param_a = 1,
        fixed_frame_pose_tolerant_loss_param_b = 1,
    
        log_solver_summary = false,
        use_online_imu_extrinsics_in_3d = true,
        fix_z_in_3d = false,
        ceres_solver_options = {
          use_nonmonotonic_steps = false,
          max_num_iterations = 50,
          num_threads = 7,
        },
      },
    
      max_num_final_iterations = 200,   -- 在建图结束之后执行一次全局优化, 不要求实时性, 迭代次数多
      global_sampling_ratio = 0.003,    -- 纯定位时候查找回环的频率
      log_residual_histograms = true,
      global_constraint_search_after_n_seconds = 10., -- 纯定位时多少秒执行一次全子图的约束计算
    
      --  overlapping_submaps_trimmer_2d = {
      --    fresh_submaps_count = 1,
      --    min_covered_area = 2,
      --    min_added_submaps_count = 5,
      --  },
    }

2.3 运行演示

powershell 复制代码
$ source devel/setup.bash
$ roslaunch cartographer_ros lx_rs16_2d_outdoor.launch

3. Cartographer 调参总结

3.1 降低延迟与减小计算量

  • 前端

    • 减小 max_range 即减小了需要处理的点数,在激光雷达远距离的数据点不准时一定要减小这个值
    • 增大 voxel_filter_size,相当于减小了需要处理的点数
    • 增大 submaps.resolution,相当于减小了匹配时的搜索量
    • 对于自适应体素滤波 减小 min_num_points 与 max_range,增大 max_length,相当于减小了需要处理的点数
  • 后端

    • 减小 optimize_every_n_nodes, 降低优化频率, 减小了计算量
    • 增大 MAP_BUILDER.num_background_threads, 增加计算速度
    • 减小 global_sampling_ratio, 减小计算全局约束的频率
    • 减小 constraint_builder.sampling_ratio, 减少了约束的数量
    • 增大 constraint_builder.min_score, 减少了约束的数量
    • 减小分枝定界搜索窗的大小, 包括linear_xy_search_window,inear_z_search_window, angular_search_window
    • 增大 global_constraint_search_after_n_seconds, 减小计算全局约束的频率
    • 减小 max_num_iterations, 减小迭代次数

3.2 降低内存

  • 增大子图的分辨率 submaps.resolution

3.3 常调的参数

cpp 复制代码
TRAJECTORY_BUILDER_2D.min_range = 0.3
TRAJECTORY_BUILDER_2D.max_range = 100.
TRAJECTORY_BUILDER_2D.min_z = 0.2 -- / -0.8
TRAJECTORY_BUILDER_2D.voxel_filter_size = 0.02
TRAJECTORY_BUILDER_2D.ceres_scan_matcher.occupied_space_weight = 10.
TRAJECTORY_BUILDER_2D.ceres_scan_matcher.translation_weight = 1.
TRAJECTORY_BUILDER_2D.ceres_scan_matcher.rotation_weight = 1.
TRAJECTORY_BUILDER_2D.submaps.num_range_data = 80.
TRAJECTORY_BUILDER_2D.submaps.grid_options_2d.resolution = 0.1 -- / 0.02
POSE_GRAPH.optimize_every_n_nodes = 160. -- 2倍的num_range_data以上
POSE_GRAPH.constraint_builder.sampling_ratio = 0.3
POSE_GRAPH.constraint_builder.max_constraint_distance = 15.
POSE_GRAPH.constraint_builder.min_score = 0.48
POSE_GRAPH.constraint_builder.global_localization_min_score = 0.60

4. Cartographer 工程化建议

4.1 如何提升建图质量

  • 选择频率高(25 Hz 以上)、精度高的激光雷达
  • 如果只能用频率低的激光雷达
    • 使用高频、高精度 IMU,且让机器人运动慢一点
    • 调 ceres 的匹配权重,将地图权重调大,平移旋转权重调小
    • 将代码中平移和旋转的残差注释掉
  • 里程计
    • Cartographer 中对里程计的使用不太好
    • 可以将 karto 与 GMapping 中使用里程计进行预测的部分拿过来进行使用,改完后就可达到比较好的位姿预测效果
  • 粗匹配
    • 将 karto 的扫描匹配的粗匹配放过来,karto 的扫描匹配的计算量很小,当做粗匹配很不错
  • 地图
    • 在最终生成地图的时候使用后端优化后的节点重新生成一次地图,这样生成的地图效果会比前端地图的叠加要好很多

4.2 降低计算量与内存

  • 体素滤波与自适应体素滤波的计算量(不是很大)
  • 后端进行子图间约束时的计算量很大
  • 分支定界算法的计算量很大
  • 降低内存,内存的占用基本就是多分辨率地图,每个子图的多分辨率地图都进行保存是否有必要

4.3 纯定位的改进建议

  • 将纯定位模式与建图拆分开,改成读取之前轨迹的地图进行匹配.
  • 新的轨迹只进行位姿预测,拿到预测后的位姿与之前轨迹的地图进行匹配,新的轨迹不再进行地图的生成与保存,同时将整个后端的功能去掉.
  • 去掉后端优化会导致没有重定位功能,这时可将 cartographer 的回环检测(子图间约束的计算)部分单独拿出来,做成一个重定位功能,通过服务来调用这个重定位功能,根据当前点云确定机器人在之前地图的位姿

4.4 去 ros 的参考思路

  • 仿照 cartographer_ros 里的操作:获取到传感器数据,将数据转到 tracking_frame 坐标系下并进行格式转换,再传入到 cartographer 里就行

5. 源码注释

相关推荐
智驾机器人技术前线18 小时前
近期两篇NeRF/3DGS-based SLAM方案赏析:TS-SLAM and MBA-SLAM
3d·slam·nerf·3dgs
CA7274 天前
【视觉SLAM】2-三维空间刚体运动的数学表示
slam·三维旋转·四元数
CA7276 天前
【视觉SLAM】4b-特征点法估计相机运动之PnP 3D-2D
slam
大山同学6 天前
RA-L开源:Light-LOAM: 基于图匹配的轻量级激光雷达里程计和地图构建
语言模型·机器人·去中心化·slam·感知定位
大山同学7 天前
DPGO:异步和并行分布式位姿图优化 2020 RA-L best paper
人工智能·分布式·语言模型·去中心化·slam·感知定位
OAK中国_官方8 天前
OAK相机:纯视觉SLAM在夜晚的应用
人工智能·机器学习·slam
极客代码11 天前
【计算机视觉】深入浅出SLAM技术原理
人工智能·python·算法·计算机视觉·机器人·slam·地图构建
大山同学12 天前
最新开源DCL-SLAM:一种用于机器人群体的分布式协作激光雷达 SLAM 框架
人工智能·分布式·机器人·开源·slam·感知定位
大山同学13 天前
多机器人图优化:2024ICARA开源
人工智能·语言模型·机器人·去中心化·slam·感知定位
Lusix194925 天前
Realsense相机驱动在使用imu数据时出现Qos问题
数码相机·slam·realsense