面试:正确率能很好的评估分类算法吗

正确率(accuracy) 正确率是我们最常见的评价指标,accuracy = (TP+TN)/(P+N),正确率是被分对的样本数在所有样本数中的占比,通常来说,正确率越高,分类器越好。

不同算法有不同特点,在不同数据集上有不同的表现效果,根据特定的任务选择不同的算法。如何评价分类算法的好坏,要做具体任务具体分析。对于决策树,主要用正确率去评估,但是其他算法,只用正确率能很好的评估吗?

答案是否定的。

正确率确实是一个很直观很好的评价指标,但是有时候正确率高并不能完全代表一个算法就好。比如对某个地区进行地震预测,地震分类属性分为0:不发生地震、1发生地震。我们都知道,不发生的概率是极大的,对于分类器而言,如果分类器不加思考,对每一个测试样例的类别都划分为0,达到99%的正确率,但是,问题来了,如果真的发生地震时,这个分类器毫无察觉,那带来的后果将是巨大的。很显然,99%正确率的分类器并不是我们想要的。出现这种现象的原因主要是数据分布不均衡,类别为1的数据太少,错分了类别1但达到了很高的正确率缺忽视了研究者本身最为关注的情况。

相关推荐
水如烟11 分钟前
孤能子视角:关系性学习,“喂饭“的小孩认知
人工智能
徐_长卿14 分钟前
2025保姆级微信AI群聊机器人教程:教你如何本地打造私人和群聊机器人
人工智能·机器人
XyX——17 分钟前
【福利教程】一键解锁 ChatGPT / Gemini / Spotify 教育权益!TG 机器人全自动验证攻略
人工智能·chatgpt·机器人
Qhumaing27 分钟前
C++学习:【PTA】数据结构 7-1 实验7-1(最小生成树-Prim算法)
c++·学习·算法
十二AI编程1 小时前
Anthropic 封杀 OpenCode,OpenAI 闪电接盘:AI 编程生态的 48 小时闪电战
人工智能·chatgpt
面向Google编程1 小时前
Flink源码阅读:JobManager的HA机制
大数据·flink
Tony Bai2 小时前
【分布式系统】03 复制(上):“权威中心”的秩序 —— 主从架构、一致性与权衡
大数据·数据库·分布式·架构
CCC:CarCrazeCurator2 小时前
从 APA 到 AVP:汽车自动泊车系统技术演进与产业发展深度研究
人工智能
OpenMiniServer2 小时前
当 AI 成为 Git 里的一个“人”
人工智能·git