状压dp,HDU1074.Doing Homework

目录

一、题目

1、题目描述

2、输入输出

2.1输入

2.2输出

3、原题链接

二、解题报告

1、思路分析

2、复杂度

3、代码详解


一、题目

1、题目描述

Ignatius has just come back school from the 30th ACM/ICPC. Now he has a lot of homework to do. Every teacher gives him a deadline of handing in the homework. If Ignatius hands in the homework after the deadline, the teacher will reduce his score of the final test, 1 day for 1 point. And as you know, doing homework always takes a long time. So Ignatius wants you to help him to arrange the order of doing homework to minimize the reduced score.

2、输入输出

2.1输入

The input contains several test cases. The first line of the input is a single integer T which is the number of test cases. T test cases follow.

Each test case start with a positive integer N(1<=N<=15) which indicate the number of homework. Then N lines follow. Each line contains a string S(the subject's name, each string will at most has 100 characters) and two integers D(the deadline of the subject), C(how many days will it take Ignatius to finish this subject's homework).

Note: All the subject names are given in the alphabet increasing order. So you may process the problem much easier.

2.2输出

Output

For each test case, you should output the smallest total reduced score, then give out the order of the subjects, one subject in a line. If there are more than one orders, you should output the alphabet smallest one.

3、原题链接

Problem - 1074 (hdu.edu.cn)


二、解题报告

1、思路分析

从数据量上会往状压dp上想

我们用二进制位表示任务是否完成,那么我们最终状态是确定的

如果有n个任务,那么我们的最终状态就是(1 << n) - 1,我们记为ed

对于ed而言,代表n个任务都已经完成,它可以由n个前驱状态转移而来

假如n = 3,那么ed = 111(2),那么可以由011、101、110三个状态转移,分别代表最后完成的任务为任务1、2、3

那么对于011,101,110而言,同样可以由前驱状态转移

那么我们自顶向下进行状态转移即可

2、复杂度

时间复杂度:O(1<<N) 空间复杂度:O(1<<N)

3、代码详解

复制代码
cpp 复制代码
#include <iostream>
#include <cstring>
#include <algorithm>
#include <string>
#include <stack>
using namespace std;
const int N = 20, inf = 0x3f3f3f3f;
struct state
{
    int pre, id, t, s;
} f[1 << N];
int cost[N], dead[N], n, tot;
string lessons[N];
void solve()
{
    cin >> n, tot = 1 << n, memset(f, 0, sizeof f);
    for (int i = 0; i < n; i++)
        cin >> lessons[i] >> dead[i] >> cost[i];
    for (int i = 1; i < tot; i++)
    {
        f[i].s = inf;
        for (int j = n - 1; j >= 0; j--)
        {
            if (i & (1 << j))
            {
                int last = i - (1 << j);
                int c = max(0, f[last].t + cost[j] - dead[j]);
                if (f[last].s + c < f[i].s)
                    f[i] = {last, j, f[last].t + cost[j], f[last].s + c};
            }
        }
    }
    cout << f[--tot].s << '\n';
    stack<int> s;
    while (f[tot].t)
    {
        s.emplace(f[tot].id), tot = f[tot].pre;
    }
    while (s.size())
        cout << lessons[s.top()] << '\n', s.pop();
}
int main()
{
    //freopen("in.txt", "r", stdin);
    ios::sync_with_stdio(false), cin.tie(0), cout.tie(0);
    int _ = 1;
    cin >> _;
    while (_--)
        solve();
    return 0;
}
相关推荐
地平线开发者17 分钟前
征程 6 | PTQ 精度调优辅助代码,总有你用得上的
算法·自动驾驶
Tisfy43 分钟前
LeetCode 837.新 21 点:动态规划+滑动窗口
数学·算法·leetcode·动态规划·dp·滑动窗口·概率
CoovallyAIHub1 小时前
为高空安全上双保险!无人机AI护航,YOLOv5秒判安全带,守护施工生命线
深度学习·算法·计算机视觉
huangzixuan10071 小时前
08.18总结
算法·深度优先·图论
逆向菜鸟2 小时前
【摧毁比特币】椭圆曲线象限细分求k-陈墨仙
python·算法
DolphinDB2 小时前
DolphinDB 回测插件快速上手
算法
利刃大大2 小时前
【动态规划:路径问题】最小路径和 && 地下城游戏
算法·动态规划·cpp·路径问题
武大打工仔2 小时前
用 Java 复现哲学家就餐问题
算法
要做朋鱼燕2 小时前
【数据结构】用堆解决TOPK问题
数据结构·算法
秋难降3 小时前
LRU缓存算法(最近最少使用算法)——工业界缓存淘汰策略的 “默认选择”
数据结构·python·算法