状压dp,HDU1074.Doing Homework

目录

一、题目

1、题目描述

2、输入输出

2.1输入

2.2输出

3、原题链接

二、解题报告

1、思路分析

2、复杂度

3、代码详解


一、题目

1、题目描述

Ignatius has just come back school from the 30th ACM/ICPC. Now he has a lot of homework to do. Every teacher gives him a deadline of handing in the homework. If Ignatius hands in the homework after the deadline, the teacher will reduce his score of the final test, 1 day for 1 point. And as you know, doing homework always takes a long time. So Ignatius wants you to help him to arrange the order of doing homework to minimize the reduced score.

2、输入输出

2.1输入

The input contains several test cases. The first line of the input is a single integer T which is the number of test cases. T test cases follow.

Each test case start with a positive integer N(1<=N<=15) which indicate the number of homework. Then N lines follow. Each line contains a string S(the subject's name, each string will at most has 100 characters) and two integers D(the deadline of the subject), C(how many days will it take Ignatius to finish this subject's homework).

Note: All the subject names are given in the alphabet increasing order. So you may process the problem much easier.

2.2输出

Output

For each test case, you should output the smallest total reduced score, then give out the order of the subjects, one subject in a line. If there are more than one orders, you should output the alphabet smallest one.

3、原题链接

Problem - 1074 (hdu.edu.cn)


二、解题报告

1、思路分析

从数据量上会往状压dp上想

我们用二进制位表示任务是否完成,那么我们最终状态是确定的

如果有n个任务,那么我们的最终状态就是(1 << n) - 1,我们记为ed

对于ed而言,代表n个任务都已经完成,它可以由n个前驱状态转移而来

假如n = 3,那么ed = 111(2),那么可以由011、101、110三个状态转移,分别代表最后完成的任务为任务1、2、3

那么对于011,101,110而言,同样可以由前驱状态转移

那么我们自顶向下进行状态转移即可

2、复杂度

时间复杂度:O(1<<N) 空间复杂度:O(1<<N)

3、代码详解

复制代码
cpp 复制代码
#include <iostream>
#include <cstring>
#include <algorithm>
#include <string>
#include <stack>
using namespace std;
const int N = 20, inf = 0x3f3f3f3f;
struct state
{
    int pre, id, t, s;
} f[1 << N];
int cost[N], dead[N], n, tot;
string lessons[N];
void solve()
{
    cin >> n, tot = 1 << n, memset(f, 0, sizeof f);
    for (int i = 0; i < n; i++)
        cin >> lessons[i] >> dead[i] >> cost[i];
    for (int i = 1; i < tot; i++)
    {
        f[i].s = inf;
        for (int j = n - 1; j >= 0; j--)
        {
            if (i & (1 << j))
            {
                int last = i - (1 << j);
                int c = max(0, f[last].t + cost[j] - dead[j]);
                if (f[last].s + c < f[i].s)
                    f[i] = {last, j, f[last].t + cost[j], f[last].s + c};
            }
        }
    }
    cout << f[--tot].s << '\n';
    stack<int> s;
    while (f[tot].t)
    {
        s.emplace(f[tot].id), tot = f[tot].pre;
    }
    while (s.size())
        cout << lessons[s.top()] << '\n', s.pop();
}
int main()
{
    //freopen("in.txt", "r", stdin);
    ios::sync_with_stdio(false), cin.tie(0), cout.tie(0);
    int _ = 1;
    cin >> _;
    while (_--)
        solve();
    return 0;
}
相关推荐
军训猫猫头7 分钟前
1.如何对多个控件进行高效的绑定 C#例子 WPF例子
开发语言·算法·c#·.net
success21 分钟前
【爆刷力扣-数组】二分查找 及 衍生题型
算法
Orlando cron1 小时前
数据结构入门:链表
数据结构·算法·链表
牛客企业服务2 小时前
2025年AI面试推荐榜单,数字化招聘转型优选
人工智能·python·算法·面试·职场和发展·金融·求职招聘
糖葫芦君2 小时前
Policy Gradient【强化学习的数学原理】
算法
向阳@向远方4 小时前
第二章 简单程序设计
开发语言·c++·算法
github_czy5 小时前
RRF (Reciprocal Rank Fusion) 排序算法详解
算法·排序算法
许愿与你永世安宁5 小时前
力扣343 整数拆分
数据结构·算法·leetcode
爱coding的橙子6 小时前
每日算法刷题Day42 7.5:leetcode前缀和3道题,用时2h
算法·leetcode·职场和发展
满分观察网友z6 小时前
从一次手滑,我洞悉了用户输入的所有可能性(3330. 找到初始输入字符串 I)
算法