状压dp,HDU1074.Doing Homework

目录

一、题目

1、题目描述

2、输入输出

2.1输入

2.2输出

3、原题链接

二、解题报告

1、思路分析

2、复杂度

3、代码详解


一、题目

1、题目描述

Ignatius has just come back school from the 30th ACM/ICPC. Now he has a lot of homework to do. Every teacher gives him a deadline of handing in the homework. If Ignatius hands in the homework after the deadline, the teacher will reduce his score of the final test, 1 day for 1 point. And as you know, doing homework always takes a long time. So Ignatius wants you to help him to arrange the order of doing homework to minimize the reduced score.

2、输入输出

2.1输入

The input contains several test cases. The first line of the input is a single integer T which is the number of test cases. T test cases follow.

Each test case start with a positive integer N(1<=N<=15) which indicate the number of homework. Then N lines follow. Each line contains a string S(the subject's name, each string will at most has 100 characters) and two integers D(the deadline of the subject), C(how many days will it take Ignatius to finish this subject's homework).

Note: All the subject names are given in the alphabet increasing order. So you may process the problem much easier.

2.2输出

Output

For each test case, you should output the smallest total reduced score, then give out the order of the subjects, one subject in a line. If there are more than one orders, you should output the alphabet smallest one.

3、原题链接

Problem - 1074 (hdu.edu.cn)


二、解题报告

1、思路分析

从数据量上会往状压dp上想

我们用二进制位表示任务是否完成,那么我们最终状态是确定的

如果有n个任务,那么我们的最终状态就是(1 << n) - 1,我们记为ed

对于ed而言,代表n个任务都已经完成,它可以由n个前驱状态转移而来

假如n = 3,那么ed = 111(2),那么可以由011、101、110三个状态转移,分别代表最后完成的任务为任务1、2、3

那么对于011,101,110而言,同样可以由前驱状态转移

那么我们自顶向下进行状态转移即可

2、复杂度

时间复杂度:O(1<<N) 空间复杂度:O(1<<N)

3、代码详解

复制代码
cpp 复制代码
#include <iostream>
#include <cstring>
#include <algorithm>
#include <string>
#include <stack>
using namespace std;
const int N = 20, inf = 0x3f3f3f3f;
struct state
{
    int pre, id, t, s;
} f[1 << N];
int cost[N], dead[N], n, tot;
string lessons[N];
void solve()
{
    cin >> n, tot = 1 << n, memset(f, 0, sizeof f);
    for (int i = 0; i < n; i++)
        cin >> lessons[i] >> dead[i] >> cost[i];
    for (int i = 1; i < tot; i++)
    {
        f[i].s = inf;
        for (int j = n - 1; j >= 0; j--)
        {
            if (i & (1 << j))
            {
                int last = i - (1 << j);
                int c = max(0, f[last].t + cost[j] - dead[j]);
                if (f[last].s + c < f[i].s)
                    f[i] = {last, j, f[last].t + cost[j], f[last].s + c};
            }
        }
    }
    cout << f[--tot].s << '\n';
    stack<int> s;
    while (f[tot].t)
    {
        s.emplace(f[tot].id), tot = f[tot].pre;
    }
    while (s.size())
        cout << lessons[s.top()] << '\n', s.pop();
}
int main()
{
    //freopen("in.txt", "r", stdin);
    ios::sync_with_stdio(false), cin.tie(0), cout.tie(0);
    int _ = 1;
    cin >> _;
    while (_--)
        solve();
    return 0;
}
相关推荐
爱吃涮毛肚的肥肥(暂时吃不了版)3 分钟前
项目班——0510——JSON网络封装
c++·算法·json
liang_202616 分钟前
【HT周赛】T3.二维平面 题解(分块:矩形chkmax,求矩形和)
数据结构·笔记·学习·算法·平面·总结
緈福的街口18 分钟前
【leetcode】2900. 最长相邻不相等子序列 I
算法·leetcode·职场和发展
易只轻松熊19 分钟前
C++(20): 文件输入输出库 —— <fstream>
开发语言·c++·算法
远瞻。40 分钟前
【论文阅读】人脸修复(face restoration ) 不同先验代表算法整理
论文阅读·算法
进击的小白菜1 小时前
LeetCode 153. 寻找旋转排序数组中的最小值:二分查找法详解及高频疑问解析
数据结构·算法·leetcode
dog2501 小时前
BBR 的 buffer 动力学观感
人工智能·算法
冲帕Chompa4 小时前
图论part10 bellman_ford算法
数据结构·算法·图论
緈福的街口4 小时前
【leetcode】144. 二叉树的前序遍历
算法·leetcode
GG不是gg4 小时前
排序算法之基础排序:冒泡,选择,插入排序详解
数据结构·算法·青少年编程·排序算法