状压dp,HDU1074.Doing Homework

目录

一、题目

1、题目描述

2、输入输出

2.1输入

2.2输出

3、原题链接

二、解题报告

1、思路分析

2、复杂度

3、代码详解


一、题目

1、题目描述

Ignatius has just come back school from the 30th ACM/ICPC. Now he has a lot of homework to do. Every teacher gives him a deadline of handing in the homework. If Ignatius hands in the homework after the deadline, the teacher will reduce his score of the final test, 1 day for 1 point. And as you know, doing homework always takes a long time. So Ignatius wants you to help him to arrange the order of doing homework to minimize the reduced score.

2、输入输出

2.1输入

The input contains several test cases. The first line of the input is a single integer T which is the number of test cases. T test cases follow.

Each test case start with a positive integer N(1<=N<=15) which indicate the number of homework. Then N lines follow. Each line contains a string S(the subject's name, each string will at most has 100 characters) and two integers D(the deadline of the subject), C(how many days will it take Ignatius to finish this subject's homework).

Note: All the subject names are given in the alphabet increasing order. So you may process the problem much easier.

2.2输出

Output

For each test case, you should output the smallest total reduced score, then give out the order of the subjects, one subject in a line. If there are more than one orders, you should output the alphabet smallest one.

3、原题链接

Problem - 1074 (hdu.edu.cn)


二、解题报告

1、思路分析

从数据量上会往状压dp上想

我们用二进制位表示任务是否完成,那么我们最终状态是确定的

如果有n个任务,那么我们的最终状态就是(1 << n) - 1,我们记为ed

对于ed而言,代表n个任务都已经完成,它可以由n个前驱状态转移而来

假如n = 3,那么ed = 111(2),那么可以由011、101、110三个状态转移,分别代表最后完成的任务为任务1、2、3

那么对于011,101,110而言,同样可以由前驱状态转移

那么我们自顶向下进行状态转移即可

2、复杂度

时间复杂度:O(1<<N) 空间复杂度:O(1<<N)

3、代码详解

复制代码
cpp 复制代码
#include <iostream>
#include <cstring>
#include <algorithm>
#include <string>
#include <stack>
using namespace std;
const int N = 20, inf = 0x3f3f3f3f;
struct state
{
    int pre, id, t, s;
} f[1 << N];
int cost[N], dead[N], n, tot;
string lessons[N];
void solve()
{
    cin >> n, tot = 1 << n, memset(f, 0, sizeof f);
    for (int i = 0; i < n; i++)
        cin >> lessons[i] >> dead[i] >> cost[i];
    for (int i = 1; i < tot; i++)
    {
        f[i].s = inf;
        for (int j = n - 1; j >= 0; j--)
        {
            if (i & (1 << j))
            {
                int last = i - (1 << j);
                int c = max(0, f[last].t + cost[j] - dead[j]);
                if (f[last].s + c < f[i].s)
                    f[i] = {last, j, f[last].t + cost[j], f[last].s + c};
            }
        }
    }
    cout << f[--tot].s << '\n';
    stack<int> s;
    while (f[tot].t)
    {
        s.emplace(f[tot].id), tot = f[tot].pre;
    }
    while (s.size())
        cout << lessons[s.top()] << '\n', s.pop();
}
int main()
{
    //freopen("in.txt", "r", stdin);
    ios::sync_with_stdio(false), cin.tie(0), cout.tie(0);
    int _ = 1;
    cin >> _;
    while (_--)
        solve();
    return 0;
}
相关推荐
总爱写点小BUG1 分钟前
打印不同的三角形(C语言)
java·c语言·算法
yaoh.wang2 分钟前
力扣(LeetCode) 27: 移除元素 - 解法思路
python·程序人生·算法·leetcode·面试·职场和发展·双指针
2401_8414956412 分钟前
【自然语言处理】中文 n-gram 词模型
人工智能·python·算法·自然语言处理·n-gram·中文文本生成模型·kneser-ney平滑
San3033 分钟前
从零到一:彻底搞定面试高频算法——“列表转树”与“爬楼梯”全解析
javascript·算法·面试
F_D_Z39 分钟前
最长连续序列(Longest Consecutive Sequence)
数据结构·算法·leetcode
ss27340 分钟前
Java并发编程:DelayQueue延迟订单系统
java·python·算法
JHC00000042 分钟前
118. 杨辉三角
python·算法·面试
WolfGang0073211 小时前
代码随想录算法训练营Day50 | 拓扑排序、dijkstra(朴素版)
数据结构·算法
业精于勤的牙1 小时前
浅谈:算法中的斐波那契数(四)
算法
一直都在5721 小时前
数据结构入门:二叉排序树的删除算法
数据结构·算法