五种多目标优化算法(MOAHA、MOGWO、NSWOA、MOPSO、NSGA2)性能对比,包含6种评价指标,9个测试函数(提供MATLAB代码)

一、5种多目标优化算法简介

1.1MOAHA

1.2MOGWO

1.3NSWOA

1.4MOPSO

1.5NSGA2

二、5种多目标优化算法性能对比

为了测试5种算法的性能将其求解9个多目标测试函数(zdt1、zdt2 、zdt3、 zdt4、 zdt6 、Schaffer、 Kursawe 、Viennet2、 Viennet3),其中Viennet2 与Viennet3的目标数为3,其余测试函数的目标数为2,并采用6种评价指标(IGD、GD、HV、Coverage、Spread、Spacing)进行评价对比

2.1部分代码

复制代码
close all;
clear ;
clc;
addpath('./MOAHA/')%添加算法路径
addpath('./MOGWO/')%添加算法路径
addpath('./NSWOA/')%添加算法路径
addpath('./MOPSO/')%添加算法路径
addpath('./NSGA2/')%添加算法路径
%%
% TestProblem测试问题说明:
%一共9个多目标测试函数1-9分别是: zdt1 zdt2 zdt3 zdt4 zdt6 Schaffer  Kursawe Viennet2 Viennet3
%%
TestProblem=3;%测试函数1-9
MultiObj = GetFunInfo(TestProblem);
MultiObjFnc=MultiObj.name;%问题名
% Parameters
params.Np = 100;        % Population size 种群大小
params.Nr = 200;        % Repository size 外部存档
params.maxgen=100;    % Maximum number of generations 最大迭代次数
numOfObj=MultiObj.numOfObj;%目标函数个数
%% 算法求解,分别得到paretoPOS和paretoPOF
[Xbest1,Fbest1] = MOAHA(params,MultiObj);
[Xbest2,Fbest2] = MOGWO(params,MultiObj);
[Xbest3,Fbest3]  = NSWOA(params,MultiObj);
[Xbest4,Fbest4] = MOPSO(params,MultiObj);
[Xbest5,Fbest5]  = NSGA2(params,MultiObj);
FbestData(1).data=Fbest1;
FbestData(2).data=Fbest2;
FbestData(3).data=Fbest3;
FbestData(4).data=Fbest4;
FbestData(5).data=Fbest5;
%% 获取测试函数的真实pareto前沿
True_Pareto=MultiObj.truePF;
%% 计算每个算法的评价指标
% ResultData的值分别是IGD、GD、HV、Coverage、Spread、Spacing
Fbest=Fbest1;
ResultData(1,:)=[IGD(Fbest,True_Pareto),GD(Fbest,True_Pareto),HV(Fbest,True_Pareto),Coverage(Fbest,True_Pareto),Spread(Fbest,True_Pareto),Spacing(Fbest,True_Pareto)];
Fbest=Fbest2;
ResultData(2,:)=[IGD(Fbest,True_Pareto),GD(Fbest,True_Pareto),HV(Fbest,True_Pareto),Coverage(Fbest,True_Pareto),Spread(Fbest,True_Pareto),Spacing(Fbest,True_Pareto)];
Fbest=Fbest3;
ResultData(3,:)=[IGD(Fbest,True_Pareto),GD(Fbest,True_Pareto),HV(Fbest,True_Pareto),Coverage(Fbest,True_Pareto),Spread(Fbest,True_Pareto),Spacing(Fbest,True_Pareto)];
Fbest=Fbest4;
ResultData(4,:)=[IGD(Fbest,True_Pareto),GD(Fbest,True_Pareto),HV(Fbest,True_Pareto),Coverage(Fbest,True_Pareto),Spread(Fbest,True_Pareto),Spacing(Fbest,True_Pareto)];
Fbest=Fbest5;
ResultData(5,:)=[IGD(Fbest,True_Pareto),GD(Fbest,True_Pareto),HV(Fbest,True_Pareto),Coverage(Fbest,True_Pareto),Spread(Fbest,True_Pareto),Spacing(Fbest,True_Pareto)];
复制代码

2.2部分结果

(2)以ZDT1为例:

(2)以Viennet3为例:

三、完整MATLAB代码

相关推荐
Codeking__42 分钟前
链表算法综合——重排链表
网络·算法·链表
minji...1 小时前
数据结构 堆(4)---TOP-K问题
java·数据结构·算法
AI_Keymaker2 小时前
一句话生成3D世界:腾讯开源混元3D模型
算法
Leon_vibs2 小时前
当 think 遇上 tool:深入解析 Agent 的规划之道
算法
旧时光巷2 小时前
【机器学习-2】 | 决策树算法基础/信息熵
算法·决策树·机器学习·id3算法·信息熵·c4.5算法
落了一地秋3 小时前
4.5 优化器中常见的梯度下降算法
人工智能·算法·机器学习
前端伪大叔3 小时前
第 5 篇:策略参数怎么调优?Freqtrade hyperopt 快速入门
算法·代码规范
Code季风3 小时前
深入理解令牌桶算法:实现分布式系统高效限流的秘籍
java·算法·微服务
KyollBM3 小时前
【Luogu】每日一题——Day15. P1144 最短路计数 (记忆化搜索 + 图论 + 最短路)
算法·图论
一百天成为python专家3 小时前
K-近邻算法
数据结构·python·算法·pandas·近邻算法·ipython·python3.11