【北邮鲁鹏老师计算机视觉课程笔记】09 Segmentation 分割

【北邮鲁鹏老师计算机视觉课程笔记】09 Segmentation 分割

1 过分割与欠分割

找一个合适的分割方法

过分割:分割得太细

自底向上的方法

无监督的

自底向上:基于像素的

自顶向下:从语义的角度

2 人是如何感知世界的

人会感觉下面的线比上面的线长

人的感知:先感知部件,然后理解组合后的整体语义

3 分割思路

临近的、颜色相似的、形状相似的、同向的、平行的、对称的、连续的、封闭的

电梯上的楼层按键

4 把分割建模成聚类任务

将像素点投影到RGB三维空间

k-means聚类

中图:基于灰度的聚类

右图:基于RGB图的聚类

缺陷:不能区分实例

5 语义分割、实例分割

实例分割:不仅要知道是辣椒类、而且要知道是哪个辣椒上的

实例的最大差异在空间上

6 k-means算法


在特征空间中寻找密集的中心


统计区域内所有点的重心

把蓝色框移动到重心上,均值漂移

一致的时候漂移结束



6 mean-shift clustering


确定有多少个密度中心

不需要假定球形聚类

维度灾难、高维空间计算困难

7 基于图的分割

分割的目标就是删除连接的边

删除相似度小的边

删除的边的相似度之和最小

定义相似性



8 归一化的图分割


w ( A , B ) w(A,B) w(A,B)是 A 、 B A、B A、B集合的全部联系权重,最小分割是希望 w ( A , B ) w(A,B) w(A,B),但是容易要么分割A,要么分割B

避免分割得过小,不鼓励只有一条边的情况
w ( A , B ) w ( A , V ) \frac{w(A,B)}{w(A,V)} w(A,V)w(A,B)
w ( A , V ) w(A,V) w(A,V)是A与其他全部顶点的连接,A的像素越多,这个值就越大,分数就越小。如果只把A或者B切割成一个像素,那么 w ( A , V ) w(A,V) w(A,V)或者 w ( A , B ) w(A,B) w(A,B)就会很小,分数就变大,这不是预期的

W是相似度矩阵,是一个对称矩阵

D是一个对角阵,第i个位置表示W第i列的和

相关推荐
qq_3564483712 分钟前
机器学习基本概念与梯度下降
人工智能
水如烟40 分钟前
孤能子视角:关系性学习,“喂饭“的小孩认知
人工智能
徐_长卿43 分钟前
2025保姆级微信AI群聊机器人教程:教你如何本地打造私人和群聊机器人
人工智能·机器人
XyX——1 小时前
【福利教程】一键解锁 ChatGPT / Gemini / Spotify 教育权益!TG 机器人全自动验证攻略
人工智能·chatgpt·机器人
十二AI编程2 小时前
Anthropic 封杀 OpenCode,OpenAI 闪电接盘:AI 编程生态的 48 小时闪电战
人工智能·chatgpt
CCC:CarCrazeCurator2 小时前
从 APA 到 AVP:汽车自动泊车系统技术演进与产业发展深度研究
人工智能
OpenMiniServer3 小时前
当 AI 成为 Git 里的一个“人”
人工智能·git
bryant_meng3 小时前
【DLNR】《High-frequency Stereo Matching Network》
人工智能·深度学习·计算机视觉·stereo matching·dlnr
梦雨羊3 小时前
Base-NLP学习
人工智能·学习·自然语言处理