【北邮鲁鹏老师计算机视觉课程笔记】09 Segmentation 分割

【北邮鲁鹏老师计算机视觉课程笔记】09 Segmentation 分割

1 过分割与欠分割

找一个合适的分割方法

过分割:分割得太细

自底向上的方法

无监督的

自底向上:基于像素的

自顶向下:从语义的角度

2 人是如何感知世界的

人会感觉下面的线比上面的线长

人的感知:先感知部件,然后理解组合后的整体语义

3 分割思路

临近的、颜色相似的、形状相似的、同向的、平行的、对称的、连续的、封闭的

电梯上的楼层按键

4 把分割建模成聚类任务

将像素点投影到RGB三维空间

k-means聚类

中图:基于灰度的聚类

右图:基于RGB图的聚类

缺陷:不能区分实例

5 语义分割、实例分割

实例分割:不仅要知道是辣椒类、而且要知道是哪个辣椒上的

实例的最大差异在空间上

6 k-means算法


在特征空间中寻找密集的中心


统计区域内所有点的重心

把蓝色框移动到重心上,均值漂移

一致的时候漂移结束



6 mean-shift clustering


确定有多少个密度中心

不需要假定球形聚类

维度灾难、高维空间计算困难

7 基于图的分割

分割的目标就是删除连接的边

删除相似度小的边

删除的边的相似度之和最小

定义相似性



8 归一化的图分割


w ( A , B ) w(A,B) w(A,B)是 A 、 B A、B A、B集合的全部联系权重,最小分割是希望 w ( A , B ) w(A,B) w(A,B),但是容易要么分割A,要么分割B

避免分割得过小,不鼓励只有一条边的情况
w ( A , B ) w ( A , V ) \frac{w(A,B)}{w(A,V)} w(A,V)w(A,B)
w ( A , V ) w(A,V) w(A,V)是A与其他全部顶点的连接,A的像素越多,这个值就越大,分数就越小。如果只把A或者B切割成一个像素,那么 w ( A , V ) w(A,V) w(A,V)或者 w ( A , B ) w(A,B) w(A,B)就会很小,分数就变大,这不是预期的

W是相似度矩阵,是一个对称矩阵

D是一个对角阵,第i个位置表示W第i列的和

相关推荐
coding消烦员16 分钟前
新版 vscode 去除快捷键 Ctrl+I 显示 Copilot 的 AI 对话框
人工智能·vscode·copilot
周杰伦_Jay31 分钟前
【自动驾驶开源仿真平台】Carla、AirSim、Udacity self-driving-car-sim、Apollo、Autoware。
人工智能·机器学习·自动驾驶
牛奶还是纯的好1 小时前
双目测距实战5-立体矫正
人工智能·3d
无风听海1 小时前
神经网络之窗口大小对词语义向量的影响
人工智能·深度学习·神经网络
sali-tec1 小时前
C# 基于halcon的视觉工作流-章52-生成标定板
开发语言·图像处理·人工智能·算法·计算机视觉
IT古董1 小时前
【第五章:计算机视觉-项目实战之推荐/广告系统】2.粗排算法-(4)粗排算法模型多目标算法(Multi Task Learning)及目标融合
人工智能·算法·1024程序员节
newxtc2 小时前
【江苏政务服务网-注册_登录安全分析报告】
人工智能·安全·yolo·政务·1024程序员节·安全爆破
rengang662 小时前
013-Spring AI Alibaba Studio 功能完整案例
人工智能·spring·spring ai·ai应用编程
勿在浮沙筑高台2 小时前
海龟交易系统R
前端·人工智能·r语言
武清伯MVP2 小时前
阮一峰《TypeScript 教程》学习笔记——类型映射
笔记·学习·typescript