【AI大语言模型】ChatGPT在地学、GIS、气象、农业、生态、环境等领域中的应用

以ChatGPT、LLaMA、Gemini、DALL·E、Midjourney、Stable Diffusion、星火大模型、文心一言、千问为代表AI大语言模型带来了新一波人工智能浪潮,可以面向科研选题、思维导图、数据清洗、统计分析、高级编程、代码调试、算法学习、论文检索、写作、翻译、润色、文献辅助阅读、文献信息提取、辅助论文审稿、新闻撰写、科技绘图、地学绘图(GIS地图绘制)、概念图生成、图像识别、教学课件、教学案例生成、基金润色、专业咨询、文件上传和处理、机器/深度学习训练与模拟 、大模型API二次开发等特定任务,生成文本、图片、代码、语音、视频 等不同形式的数据、模式和内容,成为不少科研工作者的第二大脑 。本课程通过大量生物、地球、农业、气象、生态、环境科学领域中案例,解锁大模型在科研、办公中的高级应用,一起探索如何优雅地使用大模型。

专题一、开启大模型

1 开启大模型

  1. 大模型的发展历程与最新功能

  2. 大模型的强大功能与应用场景

  3. 国内外经典大模型(ChatGPT、LLaMA、Gemini、DALL·E、Midjourney、Stable Diffusion、星火大模型、文心一言、千问等)

  4. 如何优雅使用大模型

案例1.1:开启不同平台的大模型

案例1.2:GPT不同版本的使用

案例1.3:大模型文件上传和处理

专题二、基于ChatGPT大模型提问框架

2 提问框架(提示词、指令)

  1. 专业大模型提示词,助你小白变专家

  2. 超实用的通用提示词和提问框架

  3. GPT store(GPT商店产品)及高级提问技巧

案例2.1:设定角色与投喂规则

案例2.2:行业专家指令合集

案例2.3:角色扮演与不同角度提问

案例2.4:分步提问与上下文关联

案例2.5:经典提问框架练习,提升模型效率

专题 三、基于ChatGPT大模型的论文助手

3 基于AI大模型的论文助手

案例 3 .1 大模型论文润色中英文指令大全

案例 3 .2 使用大模型进行论文润色

案例 3 .3 使用大模型对英文文献进行搜索

案例 3 .4 使用大模型对英文文献进行问答和辅助阅读

案例 3 .5 使用大模型提取英文文献关键信息

案例 3 .6 使用大模型对论文进行摘要重写

案例 3 .7 使用大模型取一个好的论文标题

案例 3 .8 使用大模型写论文框架和调整论文结构

案例 3 .9 使用大模型对论文进行翻译

案例 3 .10 使用大模型对论文进行评论,辅助撰写审稿意见

案例 3 .11 使用大模型对论文进行降重

案例 3 .12 使用大模型查找研究热点

案例 3 .13 使用大模型对你的论文凝练成新闻和微信文案

案例 3 .1 4 使用大模型对拓展论文讨论

案例 3 .1 5 使用大模型辅助专著、教材、课件的撰写

专题 四、基于ChatGPT大模型的数据清洗

3 基于 ChatGPT 的数据清洗

  1. R语言和Python基础(勿需学会,能看懂即可)

  2. 数据清洗方法(重复值、缺失值处理、异常值检验、标准化、归一化、数据长宽转换,数据分组聚合)

案例 4 .1:使用大模型指令随机生成数据

案例 4 .2:使用大模型指令读取数据

案例 4 .3:使用大模型指令进行数据清洗

案例 4 .4:使用大模型指令对农业气象数据进行预处理

案例 4 .5:使用大模型指令对生态数据进行预处理

专题 五、基于ChatGPT大模型的统计分析

5 基于AI大模型的统计分析

  1. 统计假设检验

  2. 统计学三大常用检验及其应用场景

  3. 方差分析、相关分析、回归分析

案例 5 .1:使用大模型对生态环境数据进行正态性检验、方差齐性检验

案例 5 .2:使用大模型进行t检验、F检验和卡方检验

案例 5 .3:使用大模型对生态环境数据进行方差分析、相关分析及回归分析

专题 六、基于ChatGPT的 经典统计模型

6 基于AI大模型的 经典统计模型构建

案例 6 . 1 :基于AI辅助构建的混合线性模型在生态学中应用

案例 6 . 2 :基于AI辅助的全球尺度Meta分析及诊断、绘图

案例 6 . 3 :基于AI辅助的生态环境数据结构方程模型构建

案例 6.4 :基于AI辅助的贝叶斯优化及模型参数不确定性

专题 七、基于ChatGPT大模型的机器学习

7 基于AI大模型的机器/深度学习

  1. 机器/深度学习

  2. AI大模型的底层逻辑和算法结构(GPT1-GPT4)

  3. 机器学习监督学习(回归、分类)、非监督学习(降维、聚类)

  4. 特征工程、数据分割、目标函数、参数优化、交叉验证、超参数寻优

  5. 深度学习算法(神经网络、激活函数、交叉熵、优化器)

  6. 卷积神经网络、长短期记忆网络(LSTM)

案例 7 .1:使用大模型指令构建回归模型(多元线性回归、随机森林、XGBoost、LightGBM等)

案例 7 .2:使用大模型指令构建分类模型(支持向量机、XGBoost等)

案例 7 .3:使用大模型指令构建降维模型

案例 7 .4:使用大模型指令构建聚类模型

案例 7 .5:使用大模型指令构建深度学习模型,实现预测和解释

专题 八、ChatGPT的二次开发

8 基于AI大模型的二次开发

案例 8 .1:基于API构建自己的本地大模型

案例 8 .2:基于构建的本地大模型实现ChatGPT功能、模型评价和图像生成

案例 8 . 3 :ChatGPT Store构建方法

专题 九、基于ChatGPT大模型的科研绘图

9 基于AI大模型的科研绘图

  1. 使用大模型进行数据可视化

案例 9 .1:大模型科研绘图指定全集

案例 9 .2:使用大模型指令绘制柱状图(误差线)、散点图、相关网络图、热图、小提琴图、箱型图、雷达图、玫瑰图、气泡图、森林图、三元图、三维图等各类科研图

案例 9 .3:使用大模型指令对图形进行修改

专题 十、基于ChatGPT大模型的GIS应用

10 基于AI大模型的GIS应用

  1. R语言和Python空间数据处理主要方法

  2. 基于AI大模型训练降尺度模型

  3. 基于AI大模型处理矢量、栅格数据

  4. 基于AI大模型处理多时相netCDF4数据

案例 10 .1:使用大模型绘制全球地图

案例 10 .2:使用大模型处理NASA气象多时相NC数据

案例1 0 .3:使用大模型绘制全球植被类型分布图

案例 10 .4:使用大模型栅格数据并绘制全球植被生物量图

案例 10 .5:使用大模型处理遥感数据并进行时间序列分析

案例 10.6 :使用不同插值方法对气象数据进行插值

专题 十一、基于ChatGPT大模型的项目基金助手

11 基于AI大模型的项目基金助手

  1. 基金申请讲解

  2. 基因申请助手

案例 11 .1 使用大模型进行项目选题和命题

案例 11 .2 使用大模型进行项目书写作和语言润色

案例 11 .3 使用大模型进行项目书概念图绘制

专题十 二、基于大模型的AI绘图

1 2 基于大模型的AI绘图

GPT DALL.E、Midjourney等AI大模型生成图片讲解

  1. AI画图指令套路和参数设定

例1 2 .1:使用大模型进行图像识别

案例1 2 .2:使用大模型生成图像指令合集

案例1 2 .3:使用大模型指令生成概念图

案例1 2 .4:使用大模型指令生成地球氮循环概念图

案例1 2 .5:使用大模型指令生成土壤概念图

案例1 2 .6:使用大模型指令生成病毒、植物、动物细胞结构图

案例1 2 .7:使用大模型指令生成图片素材,从此不再缺图片素材

原文链接:https://mp.weixin.qq.com/s?__biz=MzUyNzczMTI4Mg==&mid=2247680130&idx=4&sn=61fbcd77ab163f22df729044a1a084d9&chksm=fa775fbfcd00d6a91a15692b862fb85402d844017ad3f41551a965b6cbfd253eb948baea3eaa&token=1219745854&lang=zh_CN#rd

相关推荐
TMT星球1 分钟前
生数科技携手央视新闻《文博日历》,推动AI视频技术的创新应用
大数据·人工智能·科技
AI视觉网奇15 分钟前
图生3d算法学习笔记
人工智能
小锋学长生活大爆炸23 分钟前
【DGL系列】dgl中为graph指定CSR/COO/CSC矩阵格式
人工智能·pytorch·深度学习·图神经网络·gnn·dgl
佛州小李哥1 小时前
在亚马逊云科技上用AI提示词优化功能写出漂亮提示词(上)
人工智能·科技·ai·语言模型·云计算·aws·亚马逊云科技
鸭鸭鸭进京赶烤1 小时前
计算机工程:解锁未来科技之门!
人工智能·科技·opencv·ai·机器人·硬件工程·软件工程
ModelWhale1 小时前
十年筑梦,再创鲸彩!庆祝和鲸科技十周年
人工智能·科技
啊波次得饿佛哥1 小时前
9. 神经网络(一.神经元模型)
人工智能·深度学习·神经网络
互联网之声1 小时前
科家多功能美发梳:科技赋能,重塑秀发新生
人工智能·科技
Chatopera 研发团队1 小时前
Tensor 基本操作4 理解 indexing,加减乘除和 broadcasting 运算 | PyTorch 深度学习实战
人工智能·pytorch·深度学习
Bruce_Liuxiaowei1 小时前
AI时代的网络安全:传统技术的落寞与新机遇
人工智能·安全·web安全