文章目录
- [多元线性回归模型(multiple regression model)](#多元线性回归模型(multiple regression model))
- [损失/代价函数(cost function)------均方误差(mean squared error)](#损失/代价函数(cost function)——均方误差(mean squared error))
- [批量梯度下降算法(batch gradient descent algorithm)](#批量梯度下降算法(batch gradient descent algorithm))
- [特征工程(feature engineering)](#特征工程(feature engineering))
- [特征缩放(feature scaling)](#特征缩放(feature scaling))
- [正则化线性回归(regularization linear regression)](#正则化线性回归(regularization linear regression))
多元线性回归模型(multiple regression model)
- 多元线性回归模型:
f w ⃗ , b ( x ⃗ ) = w ⃗ ⋅ x ⃗ + b = w 1 x 1 + w 2 x 2 + . . . + w n x n + b = ∑ j = 1 n w j x j + b \begin{aligned} f_{\vec{w}, b}(\vec{x}) &= \vec{w} \cdot \vec{x} + b \\ &= w_1x_1 + w_2x_2 + ... + w_nx_n + b \\ &= \sum_{j=1}^{n} w_jx_j + b \end{aligned} fw ,b(x )=w ⋅x +b=w1x1+w2x2+...+wnxn+b=j=1∑nwjxj+b
其中:
- w ⃗ \vec{w} w 为权重(weight)= ( w 1 , w 2 , . . . , w n ) (w_1, w_2, ..., w_n) (w1,w2,...,wn), n n n 为向量维数
- b b b 为偏置(bias)
- x ⃗ = ( x 1 , x 2 , . . . , x n ) \vec{x} = (x_1, x_2, ..., x_n) x =(x1,x2,...,xn), n n n 为向量维数
损失/代价函数(cost function)------均方误差(mean squared error)
- 一个训练样本: x ⃗ ( i ) = ( x 1 ( i ) , x 2 ( i ) , . . . , x n ( i ) ) \vec{x}^{(i)} = (x_1^{(i)}, x_2^{(i)}, ..., x_n^{(i)}) x (i)=(x1(i),x2(i),...,xn(i)) 和 y ( i ) y^{(i)} y(i)
- 训练样本总数 = m m m
- 损失/代价函数:
J ( w ⃗ , b ) = 1 2 m ∑ i = 1 m [ f w ⃗ , b ( x ⃗ ( i ) ) − y ( i ) ] 2 = 1 2 m ∑ i = 1 m [ w ⃗ ⋅ x ⃗ ( i ) + b − y ( i ) ] 2 \begin{aligned} J(\vec{w}, b) &= \frac{1}{2m} \sum^{m}{i=1} [f{\vec{w},b}(\vec{x}^{(i)}) - y^{(i)}]^2 \\ &= \frac{1}{2m} \sum^{m}_{i=1} [\vec{w} \cdot \vec{x}^{(i)} + b - y^{(i)}]^2 \end{aligned} J(w ,b)=2m1i=1∑m[fw ,b(x (i))−y(i)]2=2m1i=1∑m[w ⋅x (i)+b−y(i)]2
批量梯度下降算法(batch gradient descent algorithm)
- α \alpha α:学习率(learning rate),用于控制梯度下降时的步长,以抵达损失函数的最小值处。若 α \alpha α 太小,梯度下降太慢;若 α \alpha α 太大,下降过程可能无法收敛。
- 批量梯度下降算法:
r e p e a t { t m p _ w 1 = w 1 − α 1 m ∑ i = 1 m [ f w ⃗ , b ( x ⃗ ( i ) ) − y ( i ) ] x 1 ( i ) t m p _ w 2 = w 2 − α 1 m ∑ i = 1 m [ f w ⃗ , b ( x ⃗ ( i ) ) − y ( i ) ] x 2 ( i ) . . . t m p _ w n = w n − α 1 m ∑ i = 1 m [ f w ⃗ , b ( x ⃗ ( i ) ) − y ( i ) ] x n ( i ) t m p _ b = b − α 1 m ∑ i = 1 m [ f w ⃗ , b ( x ⃗ ( i ) ) − y ( i ) ] s i m u l t a n e o u s u p d a t e e v e r y p a r a m e t e r s } u n t i l c o n v e r g e \begin{aligned} repeat \{ \\ & tmp\w_1 = w_1 - \alpha \frac{1}{m} \sum^{m}{i=1} [f_{\vec{w},b}(\vec{x}^{(i)}) - y^{(i)}] x_1^{(i)} \\ & tmp\w_2 = w_2 - \alpha \frac{1}{m} \sum^{m}{i=1} [f_{\vec{w},b}(\vec{x}^{(i)}) - y^{(i)}] x_2^{(i)} \\ & ... \\ & tmp\w_n = w_n - \alpha \frac{1}{m} \sum^{m}{i=1} [f_{\vec{w},b}(\vec{x}^{(i)}) - y^{(i)}] x_n^{(i)} \\ & tmp\b = b - \alpha \frac{1}{m} \sum^{m}{i=1} [f_{\vec{w},b}(\vec{x}^{(i)}) - y^{(i)}] \\ & simultaneous \ update \ every \ parameters \\ \} until \ & converge \end{aligned} repeat{}until tmp_w1=w1−αm1i=1∑m[fw ,b(x (i))−y(i)]x1(i)tmp_w2=w2−αm1i=1∑m[fw ,b(x (i))−y(i)]x2(i)...tmp_wn=wn−αm1i=1∑m[fw ,b(x (i))−y(i)]xn(i)tmp_b=b−αm1i=1∑m[fw ,b(x (i))−y(i)]simultaneous update every parametersconverge
- 检查梯度下降是否收敛(converge):函数 J ( w ⃗ , b ) J(\vec{w}, b) J(w ,b) 随迭代次数的增加应逐渐减小。令 ϵ = 0.001 \epsilon = 0.001 ϵ=0.001,若在某一次迭代中发现函数 J ( w ⃗ , b ) J(\vec{w}, b) J(w ,b) 的增长值 ≤ ϵ \leq \epsilon ≤ϵ,则说明收敛。
- 实现代码:
python
import numpy as np
import matplotlib.pyplot as plt
# 计算误差均方函数 J(w,b)
def cost_function(X, y, w, b):
m = X.shape[0] # 训练集的数据样本数
cost_sum = 0.0
for i in range(m):
f_wb_i = np.dot(w, X[i]) + b
cost = (f_wb_i - y[i]) ** 2
cost_sum += cost
return cost_sum / (2 * m)
# 计算梯度值 dJ/dw, dJ/db
def compute_gradient(X, y, w, b):
m = X.shape[0] # 训练集的数据样本数(矩阵行数)
n = X.shape[1] # 每个数据样本的维度(矩阵列数)
dj_dw = np.zeros((n,))
dj_db = 0.0
for i in range(m): # 每个数据样本
f_wb_i = np.dot(w, X[i]) + b
for j in range(n): # 每个数据样本的维度
dj_dw[j] += (f_wb_i - y[i]) * X[i, j]
dj_db += (f_wb_i - y[i])
dj_dw = dj_dw / m
dj_db = dj_db / m
return dj_dw, dj_db
# 梯度下降算法
def linear_regression(X, y, w, b, learning_rate=0.01, epochs=1000):
J_history = [] # 记录每次迭代产生的误差值
for epoch in range(epochs):
dj_dw, dj_db = compute_gradient(X, y, w, b)
# w 和 b 需同步更新
w = w - learning_rate * dj_dw
b = b - learning_rate * dj_db
J_history.append(cost_function(X, y, w, b)) # 记录每次迭代产生的误差值
return w, b, J_history
# 绘制散点图
def draw_scatter(x, y, title):
plt.xlabel("X-axis", size=15)
plt.ylabel("Y-axis", size=15)
plt.title(title, size=20)
plt.scatter(x, y)
# 打印训练集数据和预测值数据以便对比
def print_contrast(train, prediction, n):
print("train prediction")
for i in range(n):
print(np.round(train[i], 4), np.round(prediction[i], 4))
# 从这里开始执行
if __name__ == '__main__':
# 训练集样本
data = np.loadtxt("./data.txt", delimiter=',', skiprows=1)
X_train = data[:, :4] # 训练集的第 0-3 列为 X = (x0, x1, x2, x3)
y_train = data[:, 4] # 训练集的第 4 列为 y
w = np.zeros((X_train.shape[1],)) # 权重
b = 0.0 # 偏置
epochs = 1000 # 迭代次数
learning_rate = 1e-7 # 学习率
J_history = [] # 记录每次迭代产生的误差值
# 线性回归模型的建立
w, b, J_history = linear_regression(X_train, y_train, w, b, learning_rate, epochs)
print(f"result: w = {np.round(w, 4)}, b = {b:0.4f}") # 打印结果
# 训练集 y_train 与预测值 y_hat 的对比(这里其实我偷了个懒,训练集当测试集用,以后不要这样做!)
y_hat = np.zeros(X_train.shape[0])
for i in range(X_train.shape[0]):
y_hat[i] = np.dot(w, X_train[i]) + b
print_contrast(y_train, y_hat, y_train.shape[0])
# 绘制误差值的散点图
x_axis = list(range(0, epochs))
draw_scatter(x_axis, J_history, "Cost Function in Every Epoch")
plt.show()
特征工程(feature engineering)
将原有特征值通过组合或转化等方式变成新特征值。
特征缩放(feature scaling)
- 特征缩放的作用:
- 均值归一化(mean normalization):
x j ( i ) : = x j ( i ) − μ j max ( x j ) − min ( x j ) x_j^{(i)} := \frac{x_j^{(i)} - \mu_j}{\max (x_j) - \min (x_j)} xj(i):=max(xj)−min(xj)xj(i)−μj
其中: x ⃗ ( i ) = ( x 1 ( i ) , x 2 ( i ) , . . . , x j ( i ) , . . . , x n ( i ) ) \vec{x}^{(i)} = (x_1^{(i)}, x_2^{(i)}, ..., x_j^{(i)}, ..., x_n^{(i)}) x (i)=(x1(i),x2(i),...,xj(i),...,xn(i)), μ j \mu_j μj 为所有 x j x_j xj 的平均值(mean),即
μ j = 1 n ∑ i = 1 n x j ( i ) \mu_j = \frac{1}{n} \sum_{i=1}^{n} x_j^{(i)} μj=n1i=1∑nxj(i)
- z-score 归一化(z-score normalization):
x j ( i ) : = x j ( i ) − μ j σ j x_j^{(i)} := \frac{x_j^{(i)} - \mu_j}{\sigma_j} xj(i):=σjxj(i)−μj
其中: x ⃗ ( i ) = ( x 1 ( i ) , x 2 ( i ) , . . . , x j ( i ) , . . . , x n ( i ) ) \vec{x}^{(i)} = (x_1^{(i)}, x_2^{(i)}, ..., x_j^{(i)}, ..., x_n^{(i)}) x (i)=(x1(i),x2(i),...,xj(i),...,xn(i)), σ j \sigma_j σj 为所有 x j x_j xj 的标准差(Standard Deviation,std),即
μ j = 1 n ∑ i = 1 n [ x j ( i ) − μ j ] 2 \mu_j = \sqrt {\frac{1}{n} \sum_{i=1}^{n} [x_j^{(i)} - \mu_j]^2} μj=n1i=1∑n[xj(i)−μj]2
- 【归一化的问题】训练出的结果 W 和 B,在使用测试集推理时有两种使用方式:
- 直接使用,此时必须把预测时输入的 X 也做相同规则的归一化。
- 反归一化为 W,B 的本来值 W_real 和 B_real,推理时输入的 X 不需要改动。
- 另外,Y 也可以归一化,好处是迭代次数少。如果结果收敛,也可以不归一化,如果不收敛(数值过大),就必须归一化。如果 Y 归一化,对得出来的结果做关于 Y 的反归一化。
- 实现代码:
python
import numpy as np
import matplotlib.pyplot as plt
# 均值归一化
def mean_normalize_features(X):
mu = np.mean(X, axis=0) # 计算平均值,矩阵可指定计算行(axis=1)或列(axis=0,此处即特征值)
X_mean = (X - mu) / (np.max(X, axis=0) - np.min(X, axis=0))
return X_mean
# z-score 归一化
def zscore_normalize_features(X):
mu = np.mean(X, axis=0) # 计算平均值,矩阵可指定计算行(axis=1)或列(axis=0,此处即特征值)
sigma = np.std(X, axis=0) # 计算标准差,矩阵可指定计算行(axis=1)或列(axis=0,此处即特征值)
X_zscore = (X - sigma) / mu
return X_zscore
# 计算误差均方函数 J(w,b)
def cost_function(X, y, w, b):
m = X.shape[0] # 训练集的数据样本数
cost_sum = 0.0
for i in range(m):
f_wb_i = np.dot(w, X[i]) + b
cost = (f_wb_i - y[i]) ** 2
cost_sum += cost
return cost_sum / (2 * m)
# 计算梯度值 dJ/dw, dJ/db
def compute_gradient(X, y, w, b):
m = X.shape[0] # 训练集的数据样本数(矩阵行数)
n = X.shape[1] # 每个数据样本的维度(矩阵列数)
dj_dw = np.zeros((n,))
dj_db = 0.0
for i in range(m): # 每个数据样本
f_wb_i = np.dot(w, X[i]) + b
for j in range(n): # 每个数据样本的维度
dj_dw[j] += (f_wb_i - y[i]) * X[i, j]
dj_db += (f_wb_i - y[i])
dj_dw = dj_dw / m
dj_db = dj_db / m
return dj_dw, dj_db
# 梯度下降算法
def linear_regression(X, y, w, b, learning_rate=0.01, epochs=1000):
J_history = [] # 记录每次迭代产生的误差值
for epoch in range(epochs):
dj_dw, dj_db = compute_gradient(X, y, w, b)
# w 和 b 需同步更新
w = w - learning_rate * dj_dw
b = b - learning_rate * dj_db
J_history.append(cost_function(X, y, w, b)) # 记录每次迭代产生的误差值
return w, b, J_history
# 绘制散点图
def draw_scatter(x, y, title):
plt.xlabel("X-axis", size=15)
plt.ylabel("Y-axis", size=15)
plt.title(title, size=20)
plt.scatter(x, y)
# 打印训练集数据和预测值数据以便对比
def print_contrast(train, prediction, n):
print("train prediction")
for i in range(n):
print(np.round(train[i], 4), np.round(prediction[i], 4))
# 从这里开始执行
if __name__ == '__main__':
# 训练集样本
data = np.loadtxt("./data.txt", delimiter=',', skiprows=1)
X_train = data[:, :4] # 训练集的第 0-3 列为 X = (x0, x1, x2, x3)
y_train = data[:, 4] # 训练集的第 4 列为 y
w = np.zeros((X_train.shape[1],)) # 权重
b = 0.0 # 偏置
epochs = 1000 # 迭代次数
learning_rate = 0.01 # 学习率
J_history = [] # 记录每次迭代产生的误差值
# Z-score 归一化
X_norm = zscore_normalize_features(X_train)
#y_norm = zscore_normalize_features(y_train)
print(f"X_norm = {np.round(X_norm, 4)}")
#print(f"y_norm = {np.round(y_norm, 4)}")
# 线性回归模型的建立
w, b, J_history = linear_regression(X_norm, y_train, w, b, learning_rate, epochs)
print(f"result: w = {np.round(w, 4)}, b = {b:0.4f}") # 打印结果
# 训练集 y_train 与预测值 y_hat 的对比(这里其实我偷了个懒,训练集当测试集用,以后不要这样做!)
y_hat = np.zeros(X_train.shape[0])
for i in range(X_train.shape[0]):
# 注意,测试集的输入也需要进行归一化!
y_hat[i] = np.dot(w, X_norm[i]) + b
print_contrast(y_train, y_hat, y_train.shape[0])
# 绘制误差值的散点图
x_axis = list(range(0, epochs))
draw_scatter(x_axis, J_history, "Cost Function in Every Epoch")
plt.show()
正则化线性回归(regularization linear regression)
- 正则化的作用:解决过拟合(overfitting)问题(也可通过增加训练样本数据解决)。
- 损失/代价函数(仅需正则化 w w w,无需正则化 b b b):
J ( w ⃗ , b ) = 1 2 m ∑ i = 1 m [ f w ⃗ , b ( x ⃗ ( i ) ) − y ( i ) ] 2 + λ 2 m ∑ j = 1 n w j 2 \begin{aligned} J(\vec{w}, b) &= \frac{1}{2m} \sum^{m}{i=1} [f{\vec{w},b}(\vec{x}^{(i)}) - y^{(i)}]^2 + \frac{\lambda}{2m} \sum^{n}_{j=1} w_j^2 \end{aligned} J(w ,b)=2m1i=1∑m[fw ,b(x (i))−y(i)]2+2mλj=1∑nwj2
其中,第一项称为均方误差(mean squared error),第二项称为正则化项(regularization term),使 w j w_j wj 变小。初始设置的 λ \lambda λ 越大,最终得到的 w j w_j wj 越小。
- 梯度下降算法:
r e p e a t { t m p _ w 1 = w 1 − α 1 m ∑ i = 1 m [ f w ⃗ , b ( x ⃗ ( i ) ) − y ( i ) ] x 1 ( i ) + λ m w 1 t m p _ w 2 = w 2 − α 1 m ∑ i = 1 m [ f w ⃗ , b ( x ⃗ ( i ) ) − y ( i ) ] x 2 ( i ) + λ m w 2 . . . t m p _ w n = w n − α 1 m ∑ i = 1 m [ f w ⃗ , b ( x ⃗ ( i ) ) − y ( i ) ] x n ( i ) + λ m w n t m p _ b = b − α 1 m ∑ i = 1 m [ f w ⃗ , b ( x ⃗ ( i ) ) − y ( i ) ] s i m u l t a n e o u s u p d a t e e v e r y p a r a m e t e r s } u n t i l c o n v e r g e \begin{aligned} repeat \{ \\ & tmp\w_1 = w_1 - \alpha \frac{1}{m} \sum^{m}{i=1} [f_{\vec{w},b}(\vec{x}^{(i)}) - y^{(i)}] x_1^{(i)} + \frac{\lambda}{m} w_1 \\ & tmp\w_2 = w_2 - \alpha \frac{1}{m} \sum^{m}{i=1} [f_{\vec{w},b}(\vec{x}^{(i)}) - y^{(i)}] x_2^{(i)} + \frac{\lambda}{m} w_2 \\ & ... \\ & tmp\w_n = w_n - \alpha \frac{1}{m} \sum^{m}{i=1} [f_{\vec{w},b}(\vec{x}^{(i)}) - y^{(i)}] x_n^{(i)} + \frac{\lambda}{m} w_n \\ & tmp\b = b - \alpha \frac{1}{m} \sum^{m}{i=1} [f_{\vec{w},b}(\vec{x}^{(i)}) - y^{(i)}] \\ & simultaneous \ update \ every \ parameters \\ \} until \ & converge \end{aligned} repeat{}until tmp_w1=w1−αm1i=1∑m[fw ,b(x (i))−y(i)]x1(i)+mλw1tmp_w2=w2−αm1i=1∑m[fw ,b(x (i))−y(i)]x2(i)+mλw2...tmp_wn=wn−αm1i=1∑m[fw ,b(x (i))−y(i)]xn(i)+mλwntmp_b=b−αm1i=1∑m[fw ,b(x (i))−y(i)]simultaneous update every parametersconverge