pyspark统计指标计算

下面介绍如何使用pyspark处理计算超大数据的统计指标,主要为:最大值、最小值、均值、方差、标准差、中位数、众数、非重复值等。

python 复制代码
# 加载稽核数据
rd_sql = f"select * from database.table"
spark_data = spark.sql(rd_sql)
python 复制代码
# 计算众数 由于spark 2.4版本未内置相关函数 需要自定义
import pyspark.sql.functions as F
# 自定义mode的计算
def sparkdf_mode(df, cols):
    # 构建一个空数据框
    mode_df = pd.DataFrame()
    # 循环每一列
    for col in cols:
        # 先过滤空值
        filtered_df = df.filter(F.col(col).isNotNull())
        # 加个判断 防止数据全空置时报错
        if filtered_df.count()>0:
            # 统计出现次数 排序
            grouped_counts = filtered_df.groupBy(col).count().orderBy(F.col("count").desc())
            # 获取计数值最大的第一行
            first_row = grouped_counts.first()
            # 转sparkdf
            pdf = spark.createDataFrame([first_row], grouped_counts.columns).toPandas()[col]
        else:
            # 数据全空置 赋值None
            pdf = pd.DataFrame({col: [None]}) 
        # 拼接
        mode_df = pd.concat([mode_df, pdf], axis=1)
    return mode_df
python 复制代码
from pyspark.sql.functions import col, count, when, approx_count_distinct
# 分开统计 先统计字符类型
# 统计指标
string_stats = spark_data.select(string_cols+date_cols).summary("max","min").toPandas()
# 非空值数量
string_nonull = spark_data.select([count(when(col(c).isNotNull(), c)).alias(c) for c in (string_cols+date_cols)]).toPandas()
# 非重复值
string_unique = spark_data.agg(*[approx_count_distinct(col(c)).alias(c) for c in (string_cols+date_cols)]).toPandas()
# 众数
string_mode = sparkdf_mode(spark_data, (string_cols+date_cols))
# 添加空值占位
null_rows = pd.DataFrame(None, index=np.arange(len(string_stats), len(string_stats) + 3), columns=string_stats.columns)
string_stats = string_stats.append(null_rows)
# 上下拼接
string_data = pd.concat([string_stats.iloc[:, 1:], string_nonull, string_unique, string_mode])
print(f"string_data稽核完成")
python 复制代码
# 统计数值类型
# 统计指标
float_stats = spark_data.select(float_cols).summary("max","min","mean","50%","stddev").toPandas()
print(f"float_stats稽核完成")
# 非空值
float_nonull = spark_data.select([count(when(col(c).isNotNull(), c)).alias(c) for c in float_cols]).toPandas()
# 非重复值
float_unique = spark_data.agg(*[approx_count_distinct(col(c)).alias(c) for c in float_cols]).toPandas()
# 众数
float_mode = sparkdf_mode(spark_data, float_cols)
# 上下拼接
float_data = pd.concat([float_stats.iloc[:, 1:], float_nonull, float_unique, float_mode])
print(f"float_data稽核完成")
python 复制代码
# 合并转置
pdf = pd.concat([string_data, float_data], axis=1).T
# 重命名
pdf.columns = ["max", "min", "mean", "median", "std", "nonull_cnt", "unique_cnt", "mode"]
# pdf转为sdf
sdf = spark.createDataFrame(pdf)
# 创建临时视图 用于sqlAPI操作
sdf.createOrReplaceTempView("temp_view")
# 插入库表
spark.sql(f"insert overwrite table database.table select * from temp_view")
# 用完删除临时视图
spark.catalog.dropTempView("temp_view")
# 关闭spark
spark.stop()
相关推荐
free-elcmacom3 分钟前
机器学习高阶教程<7>Transformer原理全景解读:从“序列困境”到“注意力革命”
人工智能·python·机器学习·transformer
工具人55554 分钟前
strip()方法可以删除字符串中间空格吗
数据库·mysql
AI营销实验室4 分钟前
原圈科技AI CRM系统创新模式深度解析,助力工业B2B企业转型
大数据·人工智能·科技
RwwH5 分钟前
PyCharm虚拟环境创建
ide·python·pycharm
松涛和鸣7 分钟前
35、Linux IPC进阶:信号与System V共享内存
linux·运维·服务器·数据库·算法·list
武子康9 分钟前
大数据-189 Nginx JSON 日志接入 ELK:ZK+Kafka+Elasticsearch 7.3.0+Kibana 实战搭建
大数据·后端·elasticsearch
码海踏浪10 分钟前
JMeter 时间函数合集
开发语言·python
serve the people11 分钟前
tensorflow 深度解析 Sequential 模型的输入形状指定
人工智能·python·tensorflow
SunnyDays101112 分钟前
Python 实现 PDF 文档压缩:完整指南
linux·开发语言·python
长安牧笛12 分钟前
设计考研党备考开支追踪程序,记录教材,网课,报名费支出,按科目统计花费,优化备考预算分配。
python