The Era of 1-bit LLMs: All Large Language Models are in 1.58 Bits

The Era of 1-bit LLMs: All Large Language Models Are in 1.58 Bits

相关链接:arxivgithub

关键字:1-bit LLMsBitNet模型压缩能耗效率模型性能

摘要

近期的研究,例如BitNet,正在为1-bit大型语言模型(LLMs)的新时代铺平道路。在本工作中,我们介绍了一个1-bit LLM的变体------BitNet b1.58,其中LLM的每一个参数(或称为权重)均为三值{-1, 0, 1}。BitNet b1.58在复杂度和末端任务性能上与同等模型大小和训练令牌的全精度(即FP16或BF16)Transformer LLM匹敌,同时在延迟、内存、吞吐量和能源消耗等方面成本更低。更深层次地,1.58-bit LLM定义了一个新的规模法则和训练新一代LLMs的配方,这些模型既高性能又具成本效益。此外,它还启用了一种新的计算范式,并为设计优化1-bit LLM的专用硬件打开了大门。

核心方法

BitNet b1.58的关键方法包括:

  • 量化函数:采用绝对值均值(absmean)量化函数对权重进行约束至{-1, 0, +1},激活采用与BitNet相似的量化方式进行处理,将激活缩放到[-Q,Q]以拜托零点量化。
  • LLaMA-alike组件:模型结构采用LLaMA相似的组件,如RMSNorm、SwiGLU和rotary embedding,使得BitNet b1.58容易集成到流行的开源软件。
  • 从头开始训练:使用1.58-bit权重和8-bit激活,从头开始训练。

实验说明

效果对比

我们使用markdown表格形式来表示实验结果,以便于观察比较:

Models Size Memory (GB)↓ Latency (ms)↓ PPL↓
LLaMA LLM 700M 2.08 (1.00x) 1.18 (1.00x) 12.33
BitNet b1.58 700M 0.80 (2.60x) 0.96 (1.23x) 12.87
LLaMA LLM 1.3B 3.34 (1.00x) 1.62 (1.00x) 11.25
LLaMA LLM 1.3B 1.14 (2.93x) 0.97 (1.00x) 11.29
LLaMA LLM 3B 7.89(1.00x) 5.07(1.00x) 10.04
BitNet b1.58 3B 2.22(3.55x) 1.87(2.71x) 9.91
BitNet b1.58 3.9B 2.38(3.32x) 2.11(2.40x) 9.62

表格1:BitNet b1.58与LLaMA LLM在不同模型大小下的复杂度及效果对比。

Models Size ARC-e ARC-c HellaSwag Winogrande PIQA OpenbookQA BoolQ Avg.
LLaMA LLM 700M 54.7 23.0 37.0 60.0 20.2 68.9 54.8 45.5
BitNet b1.58 700M 51.8 21.4 35.1 58.2 20.0 68.1 55.2 44.3
LLaMA LLM 1.3b 56.9 23.5 38.5 59.1 21.6 70.0 53.9 46.2
BitNet b1.58 1.3B 54.9 24.2 37.7 56.7 19.6 68.8 55.8 45.4
LLaMA LLM 3B 62.1 25.6 43.3 61.8 24.6 72.1 58.2 49.7
BitNet b1.58 3B 61.4 28.3 42.9 61.5 26.6 71.5 59.3 50.2
BitNet b1.58 3.9B 64.2 28.7 44.2 63.5 24.2 73.2 60.5 51.2

表格2:BitNet b1.58与LLaMA LLM在不同终端任务中的零样本准确率对比。

这些实验中,模型在RedPajama数据集上预训练了1000亿个令牌,并在多种语言任务中评估了零拍照性能。此外,比较了BitNet b1.58和LLaMA LLM在不同模型大小下的GPU运行内存和延迟,并测量了吞吐量、能源消耗。

效率对比


图2:解码延迟与内存消耗因模型大小而异

Models Size Max Batch Size Throughput (tokens/s)
LLaMA LLM 70B 16 (1.0x) 333 (1.0x)
BitNet b1.58 70B 176 (11.0x) 2977 (8.9x)
表格3:吞吐率与batch_size的比较

结论

BitNet b1.58开辟了一条新的关于模型性能与推理成本的规模法则。我们可以根据结果确定,在延迟、内存使用和能耗方面,13B BitNet b1.58比3B FP16 LLM更高效,30B BitNet b1.58比7B FP16 LLM更高效,70B BitNet b1.58比13B FP16 LLM更高效。2T令牌的训练显示,BitNet b1.58在所有终端任务上优于3B模型,显示出1.58-bit LLM也具有强大的泛化能力。

相关推荐
焦耳加热15 小时前
湖南大学/香港城市大学《ACS Catalysis》突破:微波热冲击构筑异质结,尿素电氧化性能跃升
人工智能·科技·能源·制造·材料工程
这张生成的图像能检测吗15 小时前
(论文速读)基于迁移学习的大型复杂结构冲击监测
人工智能·数学建模·迁移学习·故障诊断·结构健康监测·传感器应用·加权质心算法
源于花海15 小时前
迁移学习的第一类方法:数据分布自适应(1)——边缘分布自适应
人工智能·机器学习·迁移学习·数据分布自适应
小北方城市网15 小时前
鸿蒙6.0:生态质变与全场景智慧体验的全面跃升
人工智能·ai·鸿蒙6.0
呆萌很15 小时前
Canny 边缘检测
人工智能
视界先声15 小时前
2025年GEO自动化闭环构建实践:监测工具选型与多平台反馈机制工程分享
大数据·人工智能·自动化
陈天伟教授15 小时前
人工智能训练师认证教程(3)Pandas数据世界的军刀
人工智能·数据分析·pandas
another heaven15 小时前
【深度学习 YOLO官方模型全解析】
人工智能·深度学习·yolo
HyperAI超神经15 小时前
【Triton 教程】triton_language.load
人工智能·学习·大语言模型·cpu·gpu·编程语言·triton
科士威传动15 小时前
丝杆支撑座同轴度如何安装?
人工智能·科技·机器学习·自动化