The Era of 1-bit LLMs: All Large Language Models are in 1.58 Bits

The Era of 1-bit LLMs: All Large Language Models Are in 1.58 Bits

相关链接:arxivgithub

关键字:1-bit LLMsBitNet模型压缩能耗效率模型性能

摘要

近期的研究,例如BitNet,正在为1-bit大型语言模型(LLMs)的新时代铺平道路。在本工作中,我们介绍了一个1-bit LLM的变体------BitNet b1.58,其中LLM的每一个参数(或称为权重)均为三值{-1, 0, 1}。BitNet b1.58在复杂度和末端任务性能上与同等模型大小和训练令牌的全精度(即FP16或BF16)Transformer LLM匹敌,同时在延迟、内存、吞吐量和能源消耗等方面成本更低。更深层次地,1.58-bit LLM定义了一个新的规模法则和训练新一代LLMs的配方,这些模型既高性能又具成本效益。此外,它还启用了一种新的计算范式,并为设计优化1-bit LLM的专用硬件打开了大门。

核心方法

BitNet b1.58的关键方法包括:

  • 量化函数:采用绝对值均值(absmean)量化函数对权重进行约束至{-1, 0, +1},激活采用与BitNet相似的量化方式进行处理,将激活缩放到[-Q,Q]以拜托零点量化。
  • LLaMA-alike组件:模型结构采用LLaMA相似的组件,如RMSNorm、SwiGLU和rotary embedding,使得BitNet b1.58容易集成到流行的开源软件。
  • 从头开始训练:使用1.58-bit权重和8-bit激活,从头开始训练。

实验说明

效果对比

我们使用markdown表格形式来表示实验结果,以便于观察比较:

Models Size Memory (GB)↓ Latency (ms)↓ PPL↓
LLaMA LLM 700M 2.08 (1.00x) 1.18 (1.00x) 12.33
BitNet b1.58 700M 0.80 (2.60x) 0.96 (1.23x) 12.87
LLaMA LLM 1.3B 3.34 (1.00x) 1.62 (1.00x) 11.25
LLaMA LLM 1.3B 1.14 (2.93x) 0.97 (1.00x) 11.29
LLaMA LLM 3B 7.89(1.00x) 5.07(1.00x) 10.04
BitNet b1.58 3B 2.22(3.55x) 1.87(2.71x) 9.91
BitNet b1.58 3.9B 2.38(3.32x) 2.11(2.40x) 9.62

表格1:BitNet b1.58与LLaMA LLM在不同模型大小下的复杂度及效果对比。

Models Size ARC-e ARC-c HellaSwag Winogrande PIQA OpenbookQA BoolQ Avg.
LLaMA LLM 700M 54.7 23.0 37.0 60.0 20.2 68.9 54.8 45.5
BitNet b1.58 700M 51.8 21.4 35.1 58.2 20.0 68.1 55.2 44.3
LLaMA LLM 1.3b 56.9 23.5 38.5 59.1 21.6 70.0 53.9 46.2
BitNet b1.58 1.3B 54.9 24.2 37.7 56.7 19.6 68.8 55.8 45.4
LLaMA LLM 3B 62.1 25.6 43.3 61.8 24.6 72.1 58.2 49.7
BitNet b1.58 3B 61.4 28.3 42.9 61.5 26.6 71.5 59.3 50.2
BitNet b1.58 3.9B 64.2 28.7 44.2 63.5 24.2 73.2 60.5 51.2

表格2:BitNet b1.58与LLaMA LLM在不同终端任务中的零样本准确率对比。

这些实验中,模型在RedPajama数据集上预训练了1000亿个令牌,并在多种语言任务中评估了零拍照性能。此外,比较了BitNet b1.58和LLaMA LLM在不同模型大小下的GPU运行内存和延迟,并测量了吞吐量、能源消耗。

效率对比


图2:解码延迟与内存消耗因模型大小而异

Models Size Max Batch Size Throughput (tokens/s)
LLaMA LLM 70B 16 (1.0x) 333 (1.0x)
BitNet b1.58 70B 176 (11.0x) 2977 (8.9x)
表格3:吞吐率与batch_size的比较

结论

BitNet b1.58开辟了一条新的关于模型性能与推理成本的规模法则。我们可以根据结果确定,在延迟、内存使用和能耗方面,13B BitNet b1.58比3B FP16 LLM更高效,30B BitNet b1.58比7B FP16 LLM更高效,70B BitNet b1.58比13B FP16 LLM更高效。2T令牌的训练显示,BitNet b1.58在所有终端任务上优于3B模型,显示出1.58-bit LLM也具有强大的泛化能力。

相关推荐
tangjunjun-owen3 分钟前
第四节:GLM-4v-9b模型的tokenizer源码解读
人工智能·glm-4v-9b·多模态大模型教程
冰蓝蓝8 分钟前
深度学习中的注意力机制:解锁智能模型的新视角
人工智能·深度学习
橙子小哥的代码世界16 分钟前
【计算机视觉基础CV-图像分类】01- 从历史源头到深度时代:一文读懂计算机视觉的进化脉络、核心任务与产业蓝图
人工智能·计算机视觉
新加坡内哥谈技术1 小时前
苏黎世联邦理工学院与加州大学伯克利分校推出MaxInfoRL:平衡内在与外在探索的全新强化学习框架
大数据·人工智能·语言模型
fanstuck2 小时前
Prompt提示工程上手指南(七)Prompt编写实战-基于智能客服问答系统下的Prompt编写
人工智能·数据挖掘·openai
lovelin+v175030409662 小时前
安全性升级:API接口在零信任架构下的安全防护策略
大数据·数据库·人工智能·爬虫·数据分析
唐小旭2 小时前
python3.6搭建pytorch环境
人工智能·pytorch·python
洛阳泰山2 小时前
MaxKB基于大语言模型和 RAG的开源知识库问答系统的快速部署教程
人工智能·语言模型·开源·rag·maxkb
程序猿阿伟2 小时前
《Java 优化秘籍:计算密集型 AI 任务加速指南》
java·开发语言·人工智能
说私域2 小时前
社交媒体形象打造中的“号设化”与开源AI智能名片商城小程序的应用
人工智能·小程序·媒体