The Era of 1-bit LLMs: All Large Language Models are in 1.58 Bits

The Era of 1-bit LLMs: All Large Language Models Are in 1.58 Bits

相关链接:arxivgithub

关键字:1-bit LLMsBitNet模型压缩能耗效率模型性能

摘要

近期的研究,例如BitNet,正在为1-bit大型语言模型(LLMs)的新时代铺平道路。在本工作中,我们介绍了一个1-bit LLM的变体------BitNet b1.58,其中LLM的每一个参数(或称为权重)均为三值{-1, 0, 1}。BitNet b1.58在复杂度和末端任务性能上与同等模型大小和训练令牌的全精度(即FP16或BF16)Transformer LLM匹敌,同时在延迟、内存、吞吐量和能源消耗等方面成本更低。更深层次地,1.58-bit LLM定义了一个新的规模法则和训练新一代LLMs的配方,这些模型既高性能又具成本效益。此外,它还启用了一种新的计算范式,并为设计优化1-bit LLM的专用硬件打开了大门。

核心方法

BitNet b1.58的关键方法包括:

  • 量化函数:采用绝对值均值(absmean)量化函数对权重进行约束至{-1, 0, +1},激活采用与BitNet相似的量化方式进行处理,将激活缩放到[-Q,Q]以拜托零点量化。
  • LLaMA-alike组件:模型结构采用LLaMA相似的组件,如RMSNorm、SwiGLU和rotary embedding,使得BitNet b1.58容易集成到流行的开源软件。
  • 从头开始训练:使用1.58-bit权重和8-bit激活,从头开始训练。

实验说明

效果对比

我们使用markdown表格形式来表示实验结果,以便于观察比较:

Models Size Memory (GB)↓ Latency (ms)↓ PPL↓
LLaMA LLM 700M 2.08 (1.00x) 1.18 (1.00x) 12.33
BitNet b1.58 700M 0.80 (2.60x) 0.96 (1.23x) 12.87
LLaMA LLM 1.3B 3.34 (1.00x) 1.62 (1.00x) 11.25
LLaMA LLM 1.3B 1.14 (2.93x) 0.97 (1.00x) 11.29
LLaMA LLM 3B 7.89(1.00x) 5.07(1.00x) 10.04
BitNet b1.58 3B 2.22(3.55x) 1.87(2.71x) 9.91
BitNet b1.58 3.9B 2.38(3.32x) 2.11(2.40x) 9.62

表格1:BitNet b1.58与LLaMA LLM在不同模型大小下的复杂度及效果对比。

Models Size ARC-e ARC-c HellaSwag Winogrande PIQA OpenbookQA BoolQ Avg.
LLaMA LLM 700M 54.7 23.0 37.0 60.0 20.2 68.9 54.8 45.5
BitNet b1.58 700M 51.8 21.4 35.1 58.2 20.0 68.1 55.2 44.3
LLaMA LLM 1.3b 56.9 23.5 38.5 59.1 21.6 70.0 53.9 46.2
BitNet b1.58 1.3B 54.9 24.2 37.7 56.7 19.6 68.8 55.8 45.4
LLaMA LLM 3B 62.1 25.6 43.3 61.8 24.6 72.1 58.2 49.7
BitNet b1.58 3B 61.4 28.3 42.9 61.5 26.6 71.5 59.3 50.2
BitNet b1.58 3.9B 64.2 28.7 44.2 63.5 24.2 73.2 60.5 51.2

表格2:BitNet b1.58与LLaMA LLM在不同终端任务中的零样本准确率对比。

这些实验中,模型在RedPajama数据集上预训练了1000亿个令牌,并在多种语言任务中评估了零拍照性能。此外,比较了BitNet b1.58和LLaMA LLM在不同模型大小下的GPU运行内存和延迟,并测量了吞吐量、能源消耗。

效率对比


图2:解码延迟与内存消耗因模型大小而异

Models Size Max Batch Size Throughput (tokens/s)
LLaMA LLM 70B 16 (1.0x) 333 (1.0x)
BitNet b1.58 70B 176 (11.0x) 2977 (8.9x)
表格3:吞吐率与batch_size的比较

结论

BitNet b1.58开辟了一条新的关于模型性能与推理成本的规模法则。我们可以根据结果确定,在延迟、内存使用和能耗方面,13B BitNet b1.58比3B FP16 LLM更高效,30B BitNet b1.58比7B FP16 LLM更高效,70B BitNet b1.58比13B FP16 LLM更高效。2T令牌的训练显示,BitNet b1.58在所有终端任务上优于3B模型,显示出1.58-bit LLM也具有强大的泛化能力。

相关推荐
DS随心转APP5 小时前
ChatGPT和Gemini回答怎么导出
人工智能·ai·chatgpt·deepseek·ds随心转
大模型玩家七七5 小时前
向量数据库实战:从“看起来能用”到“真的能用”,中间隔着一堆坑
数据库·人工智能·python·深度学习·ai·oracle
AC赳赳老秦5 小时前
科研数据叙事:DeepSeek将实验数据转化为故事化分析框架
开发语言·人工智能·数据分析·r语言·时序数据库·big data·deepseek
数智前线5 小时前
潮起178,解码AI时代传媒变革的浙江样本
人工智能
缘友一世5 小时前
张量并行和流水线并行原理深入理解与思考
学习·llm·pp·tp
Data_Journal5 小时前
【无标题】
大数据·服务器·前端·数据库·人工智能
阿杰学AI5 小时前
AI核心知识74——大语言模型之ReAct 范式(简洁且通俗易懂版)
人工智能·ai·语言模型·自然语言处理·aigc·agent·react范式
新缸中之脑5 小时前
TabPFN:表格数据基础模型
人工智能
工程师老罗5 小时前
Pytorch中的优化器及其用法
人工智能·pytorch·python
2501_948120156 小时前
大语言模型与爬虫技术融合的智能数据采集系统
人工智能·爬虫·语言模型