【MATLAB】REMD_ MFE_SVM_LSTM 神经网络时序预测算法

有意向获取代码,请转文末观看代码获取方式~也可转原文链接获取~

1 基本定义

REMD_MFE_SVM_LSTM神经网络时序预测算法是一种结合了REMD(Reservoir Enhanced Multi-scale Deep Learning)算法、多尺度特征提取(MFE)、支持向量机(SVM)和长短期记忆神经网络(LSTM)的复杂预测方法。以下是对该算法的详细介绍:

1. REMD算法

  • REMD是一种结合了集合经验模态分解(EEMD)和深度学习模型(如LSTM)的时间序列预测方法。它的基本思路是将原始时间序列通过EEMD进行分解,得到一系列固有模态函数(IMF)和一个残差项。这些IMF可以更好地表示时间序列中的复杂模式和趋势,为后续的预测提供更准确的数据表示。

  • REMD算法的优点在于能够处理非线性、非平稳的时间序列数据,并能够学习到时间序列中的长期依赖关系。EEMD能够提取时间序列中的复杂模式和趋势,为深度学习模型提供更准确的输入数据。

2. 多尺度特征提取(MFE)

  • MFE技术用于从REMD算法得到的IMF和残差项中提取多尺度特征。这些特征包括统计特性、频域特性、时域特性等,能够全面描述每个IMF和残差项在不同尺度上的行为。

  • 通过MFE,算法能够捕捉到时间序列中的局部和全局模式,为后续的预测模型提供更丰富、更有代表性的信息。

3. 支持向量机(SVM)

  • SVM是一种常用的监督学习算法,适用于处理分类和回归问题。在REMD_MFE_SVM_LSTM算法中,SVM被用来初步预测每个IMF和残差项的未来值。

  • 利用历史数据和MFE提取的多尺度特征,SVM可以训练多个独立的预测模型,每个模型对应一个IMF或残差项。这些模型能够捕捉到数据中的非线性关系,并为后续的LSTM模型提供初始预测结果。

4. 长短期记忆神经网络(LSTM)

  • LSTM是一种特殊的循环神经网络(RNN),特别适合处理具有长期依赖关系的时间序列数据。在REMD_MFE_SVM_LSTM算法中,LSTM用于进一步优化SVM的初步预测结果。

  • LSTM接收SVM的预测结果和MFE提取的多尺度特征作为输入,通过其内部的记忆单元和门控机制,学习到时间序列中的长期依赖关系。LSTM模型可以对每个IMF和残差项进行更精确的预测。

综上所述,REMD_MFE_SVM_LSTM神经网络时序预测算法结合了REMD算法、多尺度特征提取、聚类后展开支持向量机和长短期记忆神经网络的优点,实现了对复杂时间序列数据的高精度预测。这种算法在金融市场预测、气象预报、能源消耗预测等领域具有广泛的应用前景。然而,需要注意的是,该算法的计算复杂度较高,需要适当的优化和调整以适应不同的应用场景。

2 出图效果

附出图效果如下:

3 代码获取

代码见附件

相关推荐
红衣小蛇妖29 分钟前
神经网络-Day46
人工智能·深度学习·神经网络
Darkwanderor43 分钟前
数论——同余问题全家桶3 __int128和同余方程组
c++·算法·数论·中国剩余定理
Xyz_Overlord43 分钟前
机器学习——聚类算法
算法·机器学习·聚类
dessler1 小时前
代理服务器-LVS的3种模式与调度算法
运维·服务器·网络·算法·nginx·tomcat·lvs
拼好饭和她皆失1 小时前
动态规划 熟悉30题 ---上
算法·动态规划
fen_fen1 小时前
学习笔记(26):线性代数-张量的降维求和,简单示例
笔记·学习·算法
王禄DUT1 小时前
炉石传说 第八次CCF-CSP计算机软件能力认证
c++·算法
白熊1882 小时前
【推荐算法】DeepFM:特征交叉建模的革命性架构
算法·架构·推荐算法
L_cl2 小时前
【Python 算法零基础 4.排序 ⑪ 十大排序算法总结】
python·算法·排序算法
小刘不想改BUG2 小时前
LeetCode 70 爬楼梯(Java)
java·算法·leetcode