【MATLAB】REMD_ MFE_SVM_LSTM 神经网络时序预测算法

有意向获取代码,请转文末观看代码获取方式~也可转原文链接获取~

1 基本定义

REMD_MFE_SVM_LSTM神经网络时序预测算法是一种结合了REMD(Reservoir Enhanced Multi-scale Deep Learning)算法、多尺度特征提取(MFE)、支持向量机(SVM)和长短期记忆神经网络(LSTM)的复杂预测方法。以下是对该算法的详细介绍:

1. REMD算法

  • REMD是一种结合了集合经验模态分解(EEMD)和深度学习模型(如LSTM)的时间序列预测方法。它的基本思路是将原始时间序列通过EEMD进行分解,得到一系列固有模态函数(IMF)和一个残差项。这些IMF可以更好地表示时间序列中的复杂模式和趋势,为后续的预测提供更准确的数据表示。

  • REMD算法的优点在于能够处理非线性、非平稳的时间序列数据,并能够学习到时间序列中的长期依赖关系。EEMD能够提取时间序列中的复杂模式和趋势,为深度学习模型提供更准确的输入数据。

2. 多尺度特征提取(MFE)

  • MFE技术用于从REMD算法得到的IMF和残差项中提取多尺度特征。这些特征包括统计特性、频域特性、时域特性等,能够全面描述每个IMF和残差项在不同尺度上的行为。

  • 通过MFE,算法能够捕捉到时间序列中的局部和全局模式,为后续的预测模型提供更丰富、更有代表性的信息。

3. 支持向量机(SVM)

  • SVM是一种常用的监督学习算法,适用于处理分类和回归问题。在REMD_MFE_SVM_LSTM算法中,SVM被用来初步预测每个IMF和残差项的未来值。

  • 利用历史数据和MFE提取的多尺度特征,SVM可以训练多个独立的预测模型,每个模型对应一个IMF或残差项。这些模型能够捕捉到数据中的非线性关系,并为后续的LSTM模型提供初始预测结果。

4. 长短期记忆神经网络(LSTM)

  • LSTM是一种特殊的循环神经网络(RNN),特别适合处理具有长期依赖关系的时间序列数据。在REMD_MFE_SVM_LSTM算法中,LSTM用于进一步优化SVM的初步预测结果。

  • LSTM接收SVM的预测结果和MFE提取的多尺度特征作为输入,通过其内部的记忆单元和门控机制,学习到时间序列中的长期依赖关系。LSTM模型可以对每个IMF和残差项进行更精确的预测。

综上所述,REMD_MFE_SVM_LSTM神经网络时序预测算法结合了REMD算法、多尺度特征提取、聚类后展开支持向量机和长短期记忆神经网络的优点,实现了对复杂时间序列数据的高精度预测。这种算法在金融市场预测、气象预报、能源消耗预测等领域具有广泛的应用前景。然而,需要注意的是,该算法的计算复杂度较高,需要适当的优化和调整以适应不同的应用场景。

2 出图效果

附出图效果如下:

3 代码获取

代码见附件

相关推荐
数研小生5 小时前
构建命令行单词记忆工具:JSON 词库与艾宾浩斯复习算法的完美结合
算法·json
芒克芒克5 小时前
LeetCode 题解:除自身以外数组的乘积
算法·leetcode
Python 老手5 小时前
Python while 循环 极简核心讲解
java·python·算法
@Aurora.5 小时前
优选算法【专题九:哈希表】
算法·哈希算法·散列表
爱看科技6 小时前
微美全息(NASDAQ:WIMI)研究拜占庭容错联邦学习算法,数据安全与隐私保护的双重保障
算法
qq_417129256 小时前
C++中的桥接模式变体
开发语言·c++·算法
一个没有本领的人6 小时前
Matlab批量修改文件夹的名称
matlab
YuTaoShao7 小时前
【LeetCode 每日一题】3010. 将数组分成最小总代价的子数组 I——(解法二)排序
算法·leetcode·排序算法
可触的未来,发芽的智生8 小时前
狂想:为AGI代称造字ta,《第三类智慧存在,神的赐名》
javascript·人工智能·python·神经网络·程序人生
kaikaile19958 小时前
结构风荷载理论与Matlab计算
开发语言·matlab