MATLAB环境下基于LSTM模型的癫痫发作检测方法

癫痫预测研究是利用脑电信号对癫痫发病过程做出及时的预测以促进癫痫发病的防治,这一研究的重点在于充分利用癫痫发生前后人体大脑产生的脑电信号。但截至上世纪九十年代初期,医学工作者及相关领域的专家们仍然相信癫痫病的发生过程是一种突发的、毫无规律可言的随机活动。所以关于癫痫预测的研究始终是大脑病理研究工作中的一个难点课题。不过随着脑电研究的开展,如今在癫痫预测研究方面已经取得了一定的进展,但更多的学者却指出癫痫发生的过程实际上是一种随着时间而发展的活动,也就是说随着时间变化癫痫脑电信号的性质也是不同的。癫痫发病前后的大脑电信号对于预防和预测癫痫是至关重要的,所以如果能利用脑电技术辨识出癫痫发病前的情况,则有较大的可能性预知癫痫的发生,从而起到对癫痫病人的保护作用。

目前为止,尽管已有大量的癫痫发作预测算法被研究出来,但是在实际应用中,尚未出现能够有效地用于诊断和治疗的技术。而导致这个问题的原因也有许多,首先就研究中使用的癫痫脑电信号自身来说,由于目前用到的信息大部分都来自于头皮脑电信号,而脑电信号弱且不稳定的缺点,在采集时极易遭到影响。这都为数据处理增添了困难;其次,癫痫发生的机制往往是很复杂多变乃至不确定的,各种类型的病人,各种大脑部位,并且各种类型的病灶种类都会导致不同的发病机理,所以就必须针对不同的情况而采用相对应的癫痫发作预测方案。目前随着国内有关癫痫发作预测研究的逐步增加,一些脑电信号处理方法都已逐步被用来评估癫痫脑电信号并获得了一定成效。但癫痫发作的预测算法则大部分是基于时域和频域的信号分析算法,虽然时域和频域分析技术都在预估癫痫发生领域上都获得了一些研究成果,但都有一定的局限性。

提出一种基于LSTM模型的癫痫发作检测方法,算法程序运行环境为MATLAB R2021b,执行基于深度学习(LSTM)的癫痫发作自动检测,程序运行需要GPU,需要一定内存,部分代码如下:

复制代码
clc;clear all;close all
% Load in data 
load('0190_channel2_input(1) (1).mat')
load('0190_channel2_output(1) (1).mat')
Seizure_points=sum(channel2_output==1);

channel2_section=channel2;
channel2_output_section=channel2_output;

% Convert Time for x_axis
timepoint = 285.2/855605;
time = [timepoint:timepoint:timepoint*855605];

% Create Plot with Seizures highlighted
plot(time, channel2_section, 'b')
hold on 
plot(time(channel2_output_section==1),channel2_section(channel2_output_section==1), 'r')
xlabel('Time (ms)')
ylabel('Signal')
title('Local field potential with seizure events')

% Define Model 
numFeatures=1;
numHiddenUnits=200;
numClasses=2;
layers = [...
    sequenceInputLayer(numFeatures)
    lstmLayer(numHiddenUnits, 'OutputMode','sequence')
    fullyConnectedLayer(numClasses)
    softmaxLayer
    classificationLayer];
options =trainingOptions("adam",...
    "MaxEpochs",45,...
    "GradientThreshold", 2,...
    "Verbose",0,...
    "Plots",'training-progress')

出图如下:

完整代码:MATLAB环境下基于LSTM模型的癫痫发作检测方法

工学博士,担任《Mechanical System and Signal Processing》审稿专家,担任《中国电机工程学报》优秀审稿专家,《控制与决策》,《系统工程与电子技术》,《电力系统保护与控制》,《宇航学报》等EI期刊审稿专家。

擅长领域:现代信号处理,机器学习,深度学习,数字孪生,时间序列分析,设备缺陷检测、设备异常检测、设备智能故障诊断与健康管理PHM等。

相关推荐
Aevget3 分钟前
界面控件DevExpress WPF v25.2新功能预览 - 聚焦AI功能提升
人工智能·wpf·界面控件·devexpress·ui开发·.net 10
程序_白白6 分钟前
探讨一下java将来未来两年内的就业以及发展
java·开发语言
哼?~6 分钟前
C++之智能指针
开发语言·c++
violet-lz8 分钟前
数据结构八大排序:希尔排序-原理解析+C语言实现+优化+面试题
数据结构·算法·排序算法
F_D_Z12 分钟前
扩散模型对齐:DMPO 让模型更懂人类偏好
人工智能·扩散模型·kl散度·双阶段训练·散度最小化偏好优化
mjhcsp15 分钟前
C++ long long 类型深度解析:大整数处理的基石
开发语言·c++·策略模式·long long
ezl1fe16 分钟前
第一篇:把任意 HTTP API 一键变成 Agent 工具
人工智能·后端·算法
冯诺依曼的锦鲤20 分钟前
算法练习:双指针专题
c++·算法
算家计算21 分钟前
OpenAI推出首款浏览器,能否撼动全球超30亿用户的Chrome?
人工智能·openai·资讯
文火冰糖的硅基工坊22 分钟前
[人工智能-大模型-33]:模型层技术 - 大模型的神经网络架构
人工智能·神经网络·架构