MATLAB环境下简单的基于双向长短时记忆网络的时间序列预测

基于RNN梯度消失和梯度爆炸的问题,有学者提出了RNN的变体长短时记忆网络LSTM,LSTM通过改进循环神经网络的内部结构使其能够训练"记忆"更长时间步的信息,遗忘掉不重要的信息。从而改善了循环神经网络RNN梯度消失和梯度爆炸的问题。LSTM的核心思想就是通过3个门结构来舍弃掉一定不必要的信息,保留比较重要的信息,从而实现对长期信息的保存和短期重要信息的关注。但LSTM只能进行单向学习,其对时序靠前的信息学习不足,又无法利用后向的信息,这将对模型准确率产生一定影响。

1997年Schuster提出了双向循环神经网络BiRNN,其由一个正向和反向的循环神经元组成,前向神经元的输出直接作为后向神经元的输入。受到BiRNN的启发,因此学者对LSTM进行改进,提出了双向长短时记忆网络BiLSTM。其在处理序列数据时不仅能访问过去时刻的信息,而且能够访问未来时刻的信息。

双向长短时记忆网络能够利用双向信息更好的处理序列数据,从而提高模型的准确率。鉴于双向长短时记忆网络的优势,本项目采用双向长短时记忆网络对若干时间序列进行预测,包括国际航空旅客人数预测、全球冰储量预测、感染水痘人数预测、极紫外光预测、事故预测和240年的太阳黑子预测,运行环境为MATLAB R2021B,部分代码如下:

复制代码
clc; clear; close all;
%% ---------------------------- init Variabels ----------------------------
opt.Delays = [1 2 3 4 5 6 7 8 9 10 12 16 20];
opt.dataPreprocessMode  = 'Data Standardization'; % 'None' 'Data Standardization' 'Data Normalization'
opt.learningMethod      = 'LSTM';                 % 'MLP' 'LSTM'    
opt.trPercentage        = 0.8;                    %  divide data into Test  and Train dataset

% ------------- BILSTM parameters 
opt.NumOfHiddenLayers = 2;                        %  number of (bi)LSTM layers

opt.NumOfUnitsInFirstlayer  = 100;                %  number of (bi)LSTM units in the first  layer
opt.NumOfUnitsInSecondlayer = 100;                %  number of (bi)LSTM units in the second layer
opt.NumOfUnitsInThirdlayer  = 75;                 %  number of (bi)LSTM units in the third  layer
opt.NumOfUnitsInFourthlayer = 75;                 %  number of (bi)LSTM units in the forth  layer

部分出图如下:

完整代码:MATLAB环境下简单的基于双向长短时记忆网络的时间序列预测

工学博士,担任《Mechanical System and Signal Processing》审稿专家,担任《中国电机工程学报》优秀审稿专家,《控制与决策》,《系统工程与电子技术》,《电力系统保护与控制》,《宇航学报》等EI期刊审稿专家。

擅长领域:现代信号处理,机器学习,深度学习,数字孪生,时间序列分析,设备缺陷检测、设备异常检测、设备智能故障诊断与健康管理PHM等。

相关推荐
AI浩23 分钟前
VSSD:具有非因果状态空间对偶性的视觉Mamba模型
人工智能·目标检测·计算机视觉
洛_尘32 分钟前
JAVA EE初阶 2: 多线程-初阶
java·开发语言
lqqjuly1 小时前
Lidar调试记录Ⅳ之Ubuntu22.04+ROS2+Livox_SDK2环境下编译Livox ROS Driver 2
人工智能·机器人·自动驾驶
qq_436962181 小时前
数据中台:打破企业数据孤岛,实现全域资产化的关键一步
数据库·人工智能·信息可视化·数据挖掘·数据分析
@卞1 小时前
C语言常见概念
c语言·开发语言
宇若-凉凉1 小时前
BERT 完整教程指南
人工智能·深度学习·bert
cici158742 小时前
基于高光谱成像和偏最小二乘法(PLS)的苹果糖度检测MATLAB实现
算法·matlab·最小二乘法
wjs20242 小时前
Eclipse 关闭项目详解
开发语言
沐知全栈开发2 小时前
《隐藏(Hide)》
开发语言
lkbhua莱克瓦242 小时前
Java基础——方法
java·开发语言·笔记·github·学习方法