深度学习DNN

https://keras.io/api/datasets/

https://archive.ics.uci.edu/

DNN--全连接神经网络

fashion_mnist玩具集

import tensorflow as tf

import numpy as np

import matplotlib.pyplot as plt

import tensorflow.keras as ks

fm=ks.datasets.fashion_mnist# 德国时装多分类

#6万个训练数据,1万个测试数据,每个样本形状28*28

(train_imgs,train_lbs),(test_imgs,test_lbs)=fm.load_data()

plt.figure()

plt.imshow(train_imgs[0])

plt.colorbar()

plt.show()

plt.figure(figsize=(10,10))

for i in range(25):

#分成5行5列的子视图

plt.subplot(5,5,i+1)

#不显示轴

# plt.axis('off')

#不显示刻度

plt.xticks([])

plt.yticks([])

plt.imshow(train_imgs[i],cmap=plt.cm.binary)

plt.xlabel(names[train_lbs[i]])

train_imgs=train_imgs/255.0

test_imgs=test_imgs/255.0

#神经网络堆层

model=ks.Sequential([

#输入图片形状是(28x28),也可以写成(28*28,)因为图片是

#被摊平的

ks.layers.Flatten(input_shape=(28,28)),

#128个神经元,激活函数relu,隐藏层

ks.layers.Dense(128,activation='relu'),

#因为目标分类是10种,所以目标层神经元10个

ks.layers.Dense(10,activation='softmax')

])

model.summary()#28*28,(784+1)*128,(128+1)*10

#one-hot编码

from keras.utils import to_categorical

#能把标签处理成机器容易识别的行式,one-hot编码

train_lbs=to_categorical(train_lbs)

test_lbs=to_categorical(test_lbs)

#编译模型,SparseCategoricalCrossentropy能做onehot编码处理

model.compile(optimizer='adam',loss=ks.losses.SparseCategoricalCrossentropy(

from_logits=True),metrics=['accuracy'])

#batch_size=128小批量的丢进去

model.fit(train_imgs,train_lbs,epochs=10,batch_size=128)

#sigm=lambda x:1/(1+np.exp(-x))

#sigm(5.757487 )

#误差,准确率,评估

test_loss,test_acc=model.evaluate(test_imgs,test_lbs,verbose=2)

display(type(test_loss),type(test_acc),test_loss,test_acc)

#这个是线性值Z

np.set_printoptions(suppress=True)

a=model.predict(test_imgs)

display(a[0],test_lbs[0])

相关推荐
zzywxc78714 分钟前
详细探讨AI在金融、医疗、教育和制造业四大领域的具体落地案例,并通过代码、流程图、Prompt示例和图表等方式展示这些应用的实际效果。
开发语言·javascript·人工智能·深度学习·金融·prompt·流程图
算家计算17 分钟前
32K上下文开源语音理解、40分钟深度交互——Voxtral-Small-24B-2507本地部署教程
人工智能·开源·aigc
聚客AI28 分钟前
📝工程级开源:PyTorch手搓LLaMA4-MoE全栈指南
人工智能·llm·掘金·日新计划
TechubNews29 分钟前
加密资产投资的六种策略:稳定币合规后的 Web3 投资和 RWA
人工智能·web3
机器之心32 分钟前
7年了,OpenAI官方给出五代GPT对比,网友却怀念起「狂野」初代
人工智能·openai
后端小肥肠37 分钟前
Coze+ComfyUI 实战:视频制作成本降10 倍,高质量成片这么做
人工智能·aigc·coze
爱分享的飘哥1 小时前
第七十章:告别“手写循环”噩梦!Trainer结构搭建:PyTorch Lightning让你“一键炼丹”!
人工智能·pytorch·分布式训练·lightning·accelerate·训练框架·trainer
阿里云大数据AI技术1 小时前
PAIFuser:面向图像视频的训练推理加速框架
人工智能·机器学习
盛世隐者1 小时前
【深度学习】pytorch深度学习框架的环境配置
人工智能·pytorch·深度学习
说私域1 小时前
基于开源链动2+1模式AI智能名片S2B2C商城小程序的流量转化策略研究
人工智能·小程序