深度学习DNN

https://keras.io/api/datasets/

https://archive.ics.uci.edu/

DNN--全连接神经网络

fashion_mnist玩具集

import tensorflow as tf

import numpy as np

import matplotlib.pyplot as plt

import tensorflow.keras as ks

fm=ks.datasets.fashion_mnist# 德国时装多分类

#6万个训练数据,1万个测试数据,每个样本形状28*28

(train_imgs,train_lbs),(test_imgs,test_lbs)=fm.load_data()

plt.figure()

plt.imshow(train_imgs[0])

plt.colorbar()

plt.show()

plt.figure(figsize=(10,10))

for i in range(25):

#分成5行5列的子视图

plt.subplot(5,5,i+1)

#不显示轴

# plt.axis('off')

#不显示刻度

plt.xticks([])

plt.yticks([])

plt.imshow(train_imgs[i],cmap=plt.cm.binary)

plt.xlabel(names[train_lbs[i]])

train_imgs=train_imgs/255.0

test_imgs=test_imgs/255.0

#神经网络堆层

model=ks.Sequential([

#输入图片形状是(28x28),也可以写成(28*28,)因为图片是

#被摊平的

ks.layers.Flatten(input_shape=(28,28)),

#128个神经元,激活函数relu,隐藏层

ks.layers.Dense(128,activation='relu'),

#因为目标分类是10种,所以目标层神经元10个

ks.layers.Dense(10,activation='softmax')

])

model.summary()#28*28,(784+1)*128,(128+1)*10

#one-hot编码

from keras.utils import to_categorical

#能把标签处理成机器容易识别的行式,one-hot编码

train_lbs=to_categorical(train_lbs)

test_lbs=to_categorical(test_lbs)

#编译模型,SparseCategoricalCrossentropy能做onehot编码处理

model.compile(optimizer='adam',loss=ks.losses.SparseCategoricalCrossentropy(

from_logits=True),metrics=['accuracy'])

#batch_size=128小批量的丢进去

model.fit(train_imgs,train_lbs,epochs=10,batch_size=128)

#sigm=lambda x:1/(1+np.exp(-x))

#sigm(5.757487 )

#误差,准确率,评估

test_loss,test_acc=model.evaluate(test_imgs,test_lbs,verbose=2)

display(type(test_loss),type(test_acc),test_loss,test_acc)

#这个是线性值Z

np.set_printoptions(suppress=True)

a=model.predict(test_imgs)

display(a[0],test_lbs[0])

相关推荐
亚马逊云开发者8 小时前
Q CLI 助力合合信息实现 Aurora 的升级运营
人工智能
全栈胖叔叔-瓜州9 小时前
关于llamasharp 大模型多轮对话,模型对话无法终止,或者输出角色标识User:,或者System等角色标识问题。
前端·人工智能
坚果派·白晓明10 小时前
AI驱动的命令行工具集x-cmd鸿蒙化适配后通过DevBox安装使用
人工智能·华为·harmonyos
GISer_Jing10 小时前
前端营销技术实战:数据+AI实战指南
前端·javascript·人工智能
Dekesas969510 小时前
【深度学习】基于Faster R-CNN的黄瓜幼苗智能识别与定位系统,农业AI新突破
人工智能·深度学习·r语言
大佐不会说日语~10 小时前
Spring AI Alibaba 的 ChatClient 工具注册与 Function Calling 实践
人工智能·spring boot·python·spring·封装·spring ai
CeshirenTester11 小时前
Playwright元素定位详解:8种定位策略实战指南
人工智能·功能测试·程序人生·单元测试·自动化
世岩清上11 小时前
AI驱动的智能运维:从自动化到自主化的技术演进与架构革新
运维·人工智能·自动化
K2_BPM11 小时前
告别“单点智能”:AI Agent如何重构企业生产力与流程?
人工智能
TMT星球11 小时前
深业云从人工智能产业投资基金设立,聚焦AI和具身智能相关产业
人工智能