VIMA:多模态提示的通用机器人操纵

机器人任务的表述有三种形式,分别是模仿one-shot演示、跟随语言指令、以及实现视觉目标。然而,这三种方式处理的任务不同,且模型也不同。基于提示的学习在自然语言处理领域展现了通用能力,单个模型可以处理各种各样的任务。VIMA是一个机器人领域的通用智能体,基于多模态提示学习的transformer架构。VIMA这篇论文的主要贡献有:

多模态提示范式:把机器人操纵任务转化为序列建模问题。

大规模benchmark:系统性评估智能体的扩展性和泛化性。

多模态提示机器人智能体:拥有处理多任务和零样本泛化的能力。

图1 任务说明的多模态提示

多模态提示

作者们认为各种各样的任务说明范式可以被多模态提示初始化。确切的说,多模态提示被定义为任意交叉的文本与图片的有序序列,可见图1所示。其中,元素。

主要考虑的任务有6中,分别是

简单的物品操纵

实现视觉目标

新颖概念理解

one-shot视频模仿

满足视觉约束

视觉推理

VIMA-Bench

由于只有特定任务的benchmarks,所以提出了VIMA-Bench。该Benchmark的形成是由收集对象与文本对形成提示对,从而扩展Ravens机器人仿真器得到。同时,基于特权信息获得仿真环境中专家演示数据。在仿真环境中,智能体的观测空间由前向RGB图片和自顶向下视角的图片构成;动作空间由关节位置构成;奖励函数为0-1奖励,只有完成任务才有奖励。

如图2所示,作者们设计了4级评估协议,系统探索了智能体的泛化能力。

图2 评估协议

VIMA

为了学习一个高效的多任务机器人策略,设计了一个多任务编码-解码架构和以对象为中心的智能体,可见图3所示。

图3 VIMA架构

确切的说,策略由多模态提示和历史为输入。对于多模态提示,利用预训练模型T5进行编码。对于解码,利用多模态提示编码于交互数据和观测之间的交叉注意力生成动作序列。VIMA通过从有界box坐标和裁剪RGB patches计算tokens的方式得到对象为中心的表示。

Tokenization:三种类型的数据需要tokenization,分别为文本、单个对象的图片、桌面场景图片。对于文本,利用预训练T5的tokenizer和词embedding获得词tokens。对于全景图片,首先利用微调后的Masked R-CNN抽取单个对象,然后对每个对象的有界box和裁剪图片进行编码,分别使用了有界box编码器和ViT。对于单个对象的图片,利用ViT得到编码。最后,tokens以特定准则,通过预训练T5编码器编码提示。同时,为了使模型能够容纳新的模态,在非文本tokens与T5之间增加了MLP。

相关推荐
沫儿笙11 小时前
克鲁斯焊接机器人保护气省气方案
人工智能·机器人
VR最前沿17 小时前
AI+医疗!VR和MR解剖学和针灸平台,智能时代如何重塑健康未来
科技·机器人·制造
Yuroo zhou2 天前
MEMS IMU如何赋能无人机与机器人精准感知?
人工智能·单片机·嵌入式硬件·机器人·硬件架构·无人机
Deepoch2 天前
疗愈之手的智慧觉醒:Deepoc具身智能如何重塑按摩机器人的触觉神经
机器人
草履虫建模2 天前
前后端分离项目中的接口设计与调用流程——以高仙机器人集成为例
java·前端·spring boot·机器人·intellij-idea·ruoyi·js
Axis tech2 天前
Xsens人形机器人拟人动作AI训练,提升机器人工作精度与效率
人工智能·机器人
yy鹈鹕灌顶2 天前
Java+Ollama 本地部署 DeepSeek-R1 对话机器人:从 0 到 1 实战指南
java·开发语言·机器人
想要成为计算机高手3 天前
6.isaac sim4.2 教程-Core API-多机器人,多任务
人工智能·python·机器人·英伟达·模拟器·仿真环境
一颗小树x3 天前
【机器人】REGNav 具身导航 | 跨房间引导 | 图像目标导航 AAAI 2025
机器人·具身导航·regnav·跨房间·图像目标导航
触想工业平板电脑一体机3 天前
触想CX-3588主板在安保巡检领域的落地实践:解锁机器人自主智能
人工智能·机器人