缩放算法优化步骤详解

添加链接描述

背景

假设数据存放在在unsigned char* m_pData 里面,宽和高分别是:m_nDataWidth m_nDataHeight

给定缩放比例:fXZoom fYZoom,返回缩放后的unsigned char* dataZoom

这里采用最简单的缩放算法即:

根据比例计算原图和缩放后图坐标的对应关系:缩放后图坐标*缩放比例 = 原图坐标

原始代码 未优化

cpp 复制代码
#pragma once
class zoomBlock
{
public:
	zoomBlock() {};
	~zoomBlock();
	void zoomDataSSE128(unsigned char* dataZoom, float  fXZoom, float fYZoom);
	void zoomData(unsigned char* dataZoom, float  fXZoom, float fYZoom);
	void test(float  fXZoom =0.5, float fYZoom=0.5);
	void init(int DataWidth, int DataHeight);
private:
	void computeSrcValues(int* srcValues, size_t size, float zoom, int dataSize);

private:
	unsigned char* m_pData = nullptr;
	float m_fXZoom = 1 ;//x轴缩放比例  m_nXZoom=1时 不缩放
	float m_fYZoom = 1 ;//y轴缩放比例
	int m_nDataWidth = 0;
	int m_nDataHeight = 0;
};

#include "zoomBlock.h"
#include <stdio.h>
#include <iostream>
#include<iomanip>
#define SAFE_DELETE_ARRAY(p) { if( (p) != NULL ) delete[] (p); (p) = NULL; }

zoomBlock::~zoomBlock()
{
	SAFE_DELETE_ARRAY(m_pData);
}
void zoomBlock::init(int DataWidth, int DataHeight)
{
	m_nDataWidth = DataWidth;
	m_nDataHeight = DataHeight;
	m_pData = new unsigned char[m_nDataWidth* m_nDataHeight];
	for (int i = 0; i < m_nDataWidth * m_nDataHeight; ++i)
	{
		m_pData[i] = static_cast<unsigned char>(i);  // Replace this with your data initialization logic
	}
}



void zoomBlock::zoomData(unsigned char* dataZoom, float  fXZoom, float fYZoom)
{
	int nZoomDataWidth = fXZoom * m_nDataWidth;
	int nZoomDataHeight = fYZoom * m_nDataHeight;
	
	for (size_t row = 0; row < nZoomDataHeight; row++)
	{
		for (size_t column = 0; column < nZoomDataWidth; column ++)
		{
			//1
			int srcx = std::min(int(row / fYZoom), m_nDataHeight - 1);
			int srcy = std::min(int(column / fXZoom), m_nDataWidth - 1);

			//2
			int srcPos = srcx * m_nDataHeight + srcy;
			int desPos = row * nZoomDataHeight + column;
			dataZoom[desPos] = m_pData[srcPos];
		}
	}
}


void zoomBlock::test(float  fXZoom, float fYZoom)
{
	init(8,8);
	std::cout << "Values in m_pData:" << std::endl;

	for (int i = 0; i < m_nDataWidth * m_nDataHeight; ++i)
	{
		std::cout << std::setw(4) << static_cast<int>(m_pData[i]) << " ";
		if ((i + 1) % m_nDataWidth == 0) 
		{  // Adjust the value based on your data
			std::cout << std::endl;
		}
	}

	unsigned char* dataZoom = new unsigned char[fXZoom * m_nDataWidth * fYZoom * m_nDataHeight];

	zoomData(dataZoom, fXZoom, fYZoom);

	// Print or inspect the values in m_dataZoom
	int nZoomDataWidth = fXZoom * m_nDataWidth;
	int nZoomDataHeight = fYZoom * m_nDataHeight;

	std::cout << "Values in m_dataZoom:" << std::endl;
	for (int i = 0; i < nZoomDataHeight * nZoomDataWidth; ++i)
	{
		std::cout << std::setw(4)<< static_cast<int>(dataZoom[i]) << " ";
		if ((i + 1) % nZoomDataWidth == 0) {  // Adjust the value based on your data
			std::cout << std::endl;
		}
	}

	SAFE_DELETE_ARRAY(dataZoom);

}

测试代码

cpp 复制代码
int main()
{
	 zoomBlock zoomBlocktest;
	 zoomBlocktest.test(1.5,1.5);
	return 0;
}

其中函数

·void zoomBlock::zoomData(unsigned char* dataZoom, float fXZoom, float fYZoom)·

没有使用任何加速优化,现在来分析它。

sse128

我们知道sse128可以一次性处理4个int类型,所以我们把最后一层for循环改成,4个坐标的算法,不满4个的单独计算

cpp 复制代码
void zoomBlock::zoomDataSSE128(unsigned char* dataZoom, float  fXZoom, float fYZoom)
{
	int nZoomDataWidth = fXZoom * m_nDataWidth;
	int nZoomDataHeight = fYZoom * m_nDataHeight;

	for (size_t row = 0; row < nZoomDataHeight; row++)
	{
		int remian = nZoomDataWidth % 4;
		for (size_t column = 0; column < nZoomDataWidth - remian; column += 4)
		{
			//第一个坐标
			int srcx = std::min(int(row / fYZoom), m_nDataHeight - 1);
			int srcy = std::min(int(column / fXZoom), m_nDataWidth - 1);
			int srcPos = srcx * m_nDataHeight + srcy;
			int desPos = row * nZoomDataHeight + column;
			dataZoom[desPos] = m_pData[srcPos];

			//第二个坐标
			int srcx1 = std::min(int((row+1) / fYZoom), m_nDataHeight - 1);
			int srcy1 = std::min(int((column+1) / fXZoom), m_nDataWidth - 1);

			int srcPos1 = srcx1 * m_nDataHeight + srcy1;
			int desPos1 = (row+1) * nZoomDataHeight + column+1;
			dataZoom[desPos1] = m_pData[srcPos1];

			//第3个坐标
			// 。。。
			//第4个坐标
			// 。。。
		}
		// Process the remaining elements (if any) without SSE
		for (size_t column = nZoomDataWidth - remian; column < nZoomDataWidth; column++)
		{
			int srcx = std::min(int(row / fYZoom), m_nDataHeight - 1);
			int srcy = std::min(int(column / fXZoom), m_nDataWidth - 1);
			int srcPos = srcx * m_nDataHeight + srcy;
			int desPos = row * nZoomDataHeight + column;
			dataZoom[desPos] = m_pData[srcPos];
		}
	}
}

上面 一次处理四个坐标的代码要改成sse的代码

在最里层的循环里面,每次都要计算 row / fYZoom 和 column / fXZoom,这个实际上可以挪出for循环,计算一次存到数组里

数据坐标desPos和srcPos ,必须放在最内存的循环里

所以我们用calculateSrcIndex函数单独处理 row / fYZoom 和 column / fXZoom,希望达到如下效果:

cpp 复制代码
void calculateSrcIndex(int* srcValues, int size, float zoom,int max)
{
	for (int i = 0; i < size; i++)
	{
		srcValues[i] = std::min(int(i/zoom),max);
	}
}

改成sse:

cpp 复制代码
void calculateSrcIndex(int* srcValues, int size, float zoom,int max)
{
	__m128i mmIndex, mmSrcValue, mmMax;
	mmMax = _mm_set1_epi32(max);
	float zoomReciprocal = 1.0f / zoom;

	int remian = size % 4;
	for (size_t i = 0; i < size - remian; i += 4)
	{
		mmIndex = _mm_set_epi32(i + 3, i + 2, i + 1, i);
		mmSrcValue = _mm_cvtps_epi32(_mm_mul_ps(_mm_cvtepi32_ps(mmIndex), _mm_set1_ps(zoomReciprocal)));

		// Ensure srcValues are within the valid range [0, max]
		mmSrcValue = _mm_min_epi32(mmSrcValue, mmMax);

		// Store the result to the srcValues array
		_mm_storeu_si128(reinterpret_cast<__m128i*>(&srcValues[i]), mmSrcValue);
	}

	// Process the remaining elements (if any) without SSE
	for (size_t i = size - remian; i < size; i++)
	{
		srcValues[i] = std::min(int(i / zoom), max);
	}
}

解释:

这里主要处理int型数据,为了使用sse加速,要使用__m128i类型来存储4个int

加载int到__m128i:

  1. __m128i _mm_set1_epi32(int i);

    这个指令是使用1个i,来设置__m128i,将__m128i看做4个32位的部分,则每个部分都被赋为i;

  2. __m128i _mm_set_epi32(int i3, int i2,int i1, int i0);

    说明:使用4个int(32bits)变量来设置__m128i变量;

    返回值:如果返回值__m128i,分为r0,r1,r2,r3返回值规则如下:

r0 := i0

r1 := i1

r2 := i2

r3 := i3

  1. __m128i _mm_cvtps_epi32 (__m128 a)
    Converts packed 32-bit integers in a to packed single-precision (32-bit) floating-point elements.

加载float到__m128

  1. __m128 _mm_set1_ps(float w)
    对应于_mm_load1_ps的功能,不需要字节对齐,需要多条指令。(r0 = r1 = r2 = r3 = w)
  2. __m128 _mm_cvtepi32_ps (__m128i a)
    Converts packed 32-bit integers in a to packed single-precision (32-bit) floating-point elements.

float乘法

__m128 dst = _mm_mul_ps (__m128 a, __m128 b)

将a, b中的32位浮点数相乘,结果打包给dst

取最小值

__m128i _mm_min_epi32 (__m128i a, __m128i b)

Compare packed signed 32-bit integers in a and b, and store packed minimum values in dst.

Operation

FOR j := 0 to 3

i := j*32

dst[i+31:i] := MIN(a[i+31:i], b[i+31:i])

ENDFOR

所以代码修改为

cpp 复制代码
	int* srcX = new int[nZoomDataHeight];
	int* srcY = new int[nZoomDataWidth];
	calculateSrcIndex(srcX, nZoomDataHeight, fXZoom , m_nDataHeight - 1);
	calculateSrcIndex(srcY, nZoomDataWidth, fYZoom, m_nDataWidth - 1);

	for (size_t row = 0; row < nZoomDataHeight; row++)
	{
		int remian = nZoomDataWidth % 4;
		for (size_t column = 0; column < nZoomDataWidth - remian; column += 4)
		{
			//第一个坐标
			int srcPos = srcX[row] * m_nDataHeight + srcY[column];
			int desPos = row * nZoomDataHeight + column;
			dataZoom[desPos] = m_pData[srcPos];
			...
			}
	}

然后把坐标的计算转为sse

cpp 复制代码
void zoomBlock::zoomDataSSE128(unsigned char* dataZoom, float  fXZoom, float fYZoom)
{
	int nZoomDataWidth = fXZoom * m_nDataWidth;
	int nZoomDataHeight = fYZoom * m_nDataHeight;

	
	int* srcX = new int[nZoomDataWidth];
	int* srcY = new int[nZoomDataHeight];
	
	calculateSrcIndex(srcX, nZoomDataWidth, fXZoom, m_nDataWidth - 1);
	calculateSrcIndex(srcY, nZoomDataHeight, fYZoom, m_nDataHeight - 1);

	for (size_t y = 0; y < nZoomDataHeight; y++)
	{
		int remian = nZoomDataWidth % 4;
		for (size_t x = 0; x < nZoomDataWidth - remian; x += 4)
		{
			__m128i mmsrcX = _mm_set_epi32(srcX[x + 3], srcX[x + 2], srcX[x+1], srcX[x]);
			__m128i srcPosIndices = _mm_add_epi32(
				_mm_set1_epi32(srcY[y] * m_nDataWidth),
				mmsrcX);

			__m128i desPosIndices = _mm_add_epi32(
				_mm_set1_epi32(y * nZoomDataWidth),
				_mm_set_epi32(x + 3, x + 2, x + 1, x)
				);
			dataZoom[desPosIndices.m128i_i32[0]] = m_pData[srcPosIndices.m128i_i32[0]];
			dataZoom[desPosIndices.m128i_i32[1]] = m_pData[srcPosIndices.m128i_i32[1]];
			dataZoom[desPosIndices.m128i_i32[2]] = m_pData[srcPosIndices.m128i_i32[2]];
			dataZoom[desPosIndices.m128i_i32[3]] = m_pData[srcPosIndices.m128i_i32[3]];
			/*cout << "srcPosIndices: " << srcPosIndices.m128i_i32[0] << " , desPosIndices : " << desPosIndices.m128i_i32[0] << endl;
				cout << "srcPosIndices: " << srcPosIndices.m128i_i32[1] << " , desPosIndices : " << desPosIndices.m128i_i32[1] << endl;
				cout << "srcPosIndices: " << srcPosIndices.m128i_i32[2] << " , desPosIndices : " << desPosIndices.m128i_i32[2] << endl;
				cout << "srcPosIndices: " << srcPosIndices.m128i_i32[3] << " , desPosIndices : " << desPosIndices.m128i_i32[3] << endl;*/
		}
		// Process the remaining elements (if any) without SSE
		for (size_t x = nZoomDataWidth - remian; x < nZoomDataWidth; x++)
		{
			int srcy = std::min(int(y / fYZoom), m_nDataHeight - 1);
			int srcx = std::min(int(x / fXZoom), m_nDataWidth - 1);
			int srcPos = srcy * m_nDataHeight + srcx;
			int desPos = y * nZoomDataHeight + x;
			dataZoom[desPos] = m_pData[srcPos];
		}
	}
	delete[] srcX;
	delete[] srcY;
}

完整的代码

cpp 复制代码
 #pragma once
class zoomBlock
{
public:
	zoomBlock() {};
	~zoomBlock();
	void zoomDataSSE128(unsigned char* dataZoom, float  fXZoom, float fYZoom);
	void zoomData(unsigned char* dataZoom, float  fXZoom, float fYZoom);
	void test(float  fXZoom =0.5, float fYZoom=0.5);
	void init(int DataWidth, int DataHeight);
private:
	inline void calculateSrcIndex(int* srcValues, int size, float zoom, int max);

private:
	unsigned char* m_pData = nullptr;
	float m_fXZoom = 1 ;//x轴缩放比例  m_nXZoom=1时 不缩放
	float m_fYZoom = 1 ;//y轴缩放比例
	int m_nDataWidth = 0;
	int m_nDataHeight = 0;
};

#include "zoomBlock.h"
#include <stdio.h>
#include <iostream>
#include<iomanip>
#include<immintrin.h> 
using namespace std;
#define SAFE_DELETE_ARRAY(p) { if( (p) != NULL ) delete[] (p); (p) = NULL; }

zoomBlock::~zoomBlock()
{
	SAFE_DELETE_ARRAY(m_pData);
}
void zoomBlock::init(int DataWidth, int DataHeight)
{
	m_nDataWidth = DataWidth;
	m_nDataHeight = DataHeight;
	m_pData = new unsigned char[m_nDataWidth* m_nDataHeight];
	for (int i = 0; i < m_nDataWidth * m_nDataHeight; ++i)
	{
		m_pData[i] = static_cast<unsigned char>(i);  // Replace this with your data initialization logic
	}
}


void zoomBlock::zoomData(unsigned char* dataZoom, float  fXZoom, float fYZoom)
{
	int nZoomDataWidth = fXZoom * m_nDataWidth;
	int nZoomDataHeight = fYZoom * m_nDataHeight;
	
	for (size_t y = 0; y < nZoomDataHeight; y++)
	{
		for (size_t x = 0; x < nZoomDataWidth; x ++)
		{
			//1
			int srcy = std::min(int(y / fYZoom), m_nDataHeight - 1);
			int srcx = std::min(int(x / fXZoom), m_nDataWidth - 1);

			//2
			int srcPos = srcy * m_nDataWidth + srcx;
			int desPos = y * nZoomDataWidth + x;
			dataZoom[desPos] = m_pData[srcPos];
		}
	}
}

inline void zoomBlock::calculateSrcIndex(int* srcValues, int size, float zoom,int max)
{
	__m128i mmIndex, mmSrcValue, mmMax;
	mmMax = _mm_set1_epi32(max);
	float zoomReciprocal = 1.0f / zoom;

	int remian = size % 4;
	for (size_t i = 0; i < size - remian; i += 4)
	{
		mmIndex = _mm_set_epi32(i + 3, i + 2, i + 1, i);
		mmSrcValue = _mm_cvttps_epi32(_mm_mul_ps(_mm_cvtepi32_ps(mmIndex), _mm_set1_ps(zoomReciprocal)));

		// Ensure srcValues are within the valid range [0, max]
		mmSrcValue = _mm_min_epi32(mmSrcValue, mmMax);

		// Store the result to the srcValues array
		_mm_storeu_si128(reinterpret_cast<__m128i*>(&srcValues[i]), mmSrcValue);
	}

	// Process the remaining elements (if any) without SSE
	for (size_t i = size - remian; i < size; i++)
	{
		srcValues[i] = std::min(int(i / zoom), max);
	}
}

void zoomBlock::zoomDataSSE128(unsigned char* dataZoom, float  fXZoom, float fYZoom)
{
	int nZoomDataWidth = fXZoom * m_nDataWidth;
	int nZoomDataHeight = fYZoom * m_nDataHeight;

	
	int* srcX = new int[nZoomDataWidth];
	int* srcY = new int[nZoomDataHeight];
	
	calculateSrcIndex(srcX, nZoomDataWidth, fXZoom, m_nDataWidth - 1);
	calculateSrcIndex(srcY, nZoomDataHeight, fYZoom, m_nDataHeight - 1);

	for (size_t y = 0; y < nZoomDataHeight; y++)
	{
		int remian = nZoomDataWidth % 4;
		for (size_t x = 0; x < nZoomDataWidth - remian; x += 4)
		{
			/*int srcPos = srcx * m_nDataHeight + srcy;
			int desPos = row * nZoomDataHeight + column;*/
			//dataZoom[desPos] = m_pData[srcPos];

			//__m128i mmsrcY = _mm_loadu_si128((__m128i*)(srcY));
			__m128i mmsrcX = _mm_set_epi32(srcX[x + 3], srcX[x + 2], srcX[x+1], srcX[x]);
			__m128i srcPosIndices = _mm_add_epi32(
				_mm_set1_epi32(srcY[y] * m_nDataWidth),
				mmsrcX);

			__m128i desPosIndices = _mm_add_epi32(
				_mm_set1_epi32(y * nZoomDataWidth),
				_mm_set_epi32(x + 3, x + 2, x + 1, x)
				);
			dataZoom[desPosIndices.m128i_i32[0]] = m_pData[srcPosIndices.m128i_i32[0]];
			dataZoom[desPosIndices.m128i_i32[1]] = m_pData[srcPosIndices.m128i_i32[1]];
			dataZoom[desPosIndices.m128i_i32[2]] = m_pData[srcPosIndices.m128i_i32[2]];
			dataZoom[desPosIndices.m128i_i32[3]] = m_pData[srcPosIndices.m128i_i32[3]];
			/*cout << "srcPosIndices: " << srcPosIndices.m128i_i32[0] << " , desPosIndices : " << desPosIndices.m128i_i32[0] << endl;
				cout << "srcPosIndices: " << srcPosIndices.m128i_i32[1] << " , desPosIndices : " << desPosIndices.m128i_i32[1] << endl;
				cout << "srcPosIndices: " << srcPosIndices.m128i_i32[2] << " , desPosIndices : " << desPosIndices.m128i_i32[2] << endl;
				cout << "srcPosIndices: " << srcPosIndices.m128i_i32[3] << " , desPosIndices : " << desPosIndices.m128i_i32[3] << endl;*/
		}
		// Process the remaining elements (if any) without SSE
		for (size_t x = nZoomDataWidth - remian; x < nZoomDataWidth; x++)
		{
			int srcy = std::min(int(y / fYZoom), m_nDataHeight - 1);
			int srcx = std::min(int(x / fXZoom), m_nDataWidth - 1);
			int srcPos = srcy * m_nDataHeight + srcx;
			int desPos = y * nZoomDataHeight + x;
			dataZoom[desPos] = m_pData[srcPos];
		}
	}
	delete[] srcX;
	delete[] srcY;
}


void zoomBlock::test(float  fXZoom, float fYZoom)
{
	init(8,4);
	std::cout << "Values in m_pData:" << std::endl;

	for (int i = 0; i < m_nDataWidth * m_nDataHeight; ++i)
	{
		std::cout << std::setw(4) << static_cast<int>(m_pData[i]) << " ";
		if ((i + 1) % m_nDataWidth == 0) 
		{  // Adjust the value based on your data
			std::cout << std::endl;
		}
	}

	
	int nZoomDataWidth = fXZoom * m_nDataWidth;
	int nZoomDataHeight = fYZoom * m_nDataHeight;
	unsigned char* dataZoom = new unsigned char[nZoomDataWidth * nZoomDataHeight];
	zoomDataSSE128(dataZoom, fXZoom, fYZoom);
	//zoomData(dataZoom, fXZoom, fYZoom);
	// Print or inspect the values in m_dataZoom

	std::cout << "Values in m_dataZoom:" << std::endl;
	for (int i = 0; i < nZoomDataHeight * nZoomDataWidth; ++i)
	{
		std::cout << std::setw(4)<< static_cast<int>(dataZoom[i]) << " ";
		if ((i + 1) % nZoomDataWidth == 0) {  // Adjust the value based on your data
			std::cout << std::endl;
		}
	}

	SAFE_DELETE_ARRAY(dataZoom);

}

int main()
{
	 zoomBlock zoomBlocktest;
	 zoomBlocktest.test(2,1);
	return 0;
}

AVX 256

cpp 复制代码
inline void zoomBlock::calculateSrcIndex256(int* srcValues, int size, float zoom, int max)
{
	__m256i ymmIndex, ymmSrcValue, ymmMax;
	ymmMax = _mm256_set1_epi32(max);
	float zoomReciprocal = 1.0f / zoom;

	int remian = size % 8;
	for (size_t i = 0; i < size - remian; i += 8)
	{
		ymmIndex = _mm256_set_epi32(i + 7, i + 6, i + 5, i + 4, i + 3, i + 2, i + 1, i);
		ymmSrcValue = _mm256_cvtps_epi32(_mm256_mul_ps(_mm256_cvtepi32_ps(ymmIndex), _mm256_set1_ps(zoomReciprocal)));

		// Ensure srcValues are within the valid range [0, max]
		ymmSrcValue = _mm256_min_epi32(ymmSrcValue, ymmMax);

		// Store the result to the srcValues array
		_mm256_storeu_si256(reinterpret_cast<__m256i*>(&srcValues[i]), ymmSrcValue);
	}

	// Process the remaining elements (if any) without AVX2
	for (size_t i = size - remian; i < size; i++)
	{
		srcValues[i] = std::min(int(i / zoom), max);
	}
}
void zoomBlock::zoomDataAVX2(unsigned char* dataZoom, float fXZoom, float fYZoom)
{
	int nZoomDataWidth = fXZoom * m_nDataWidth;
	int nZoomDataHeight = fYZoom * m_nDataHeight;

	int* srcX = new int[nZoomDataWidth];
	int* srcY = new int[nZoomDataHeight];

	calculateSrcIndex(srcX, nZoomDataWidth, fXZoom, m_nDataWidth - 1);
	calculateSrcIndex(srcY, nZoomDataHeight, fYZoom, m_nDataHeight - 1);

	for (size_t y = 0; y < nZoomDataHeight; y++)
	{
		int remian = nZoomDataWidth % 8;
		for (size_t x = 0; x < nZoomDataWidth - remian; x += 8)
		{
			__m256i ymmSrcX = _mm256_set_epi32(srcX[x + 7], srcX[x + 6], srcX[x + 5], srcX[x + 4],
				srcX[x + 3], srcX[x + 2], srcX[x + 1], srcX[x]);
			__m256i srcPosIndices = _mm256_add_epi32(
				_mm256_set1_epi32(srcY[y] * m_nDataWidth),
				ymmSrcX);

			__m256i desPosIndices = _mm256_add_epi32(
				_mm256_set1_epi32(y * nZoomDataWidth),
				_mm256_set_epi32(x + 7, x + 6, x + 5, x + 4, x + 3, x + 2, x + 1, x));

			dataZoom[desPosIndices.m256i_i32[0]] = m_pData[srcPosIndices.m256i_i32[0]];
			dataZoom[desPosIndices.m256i_i32[1]] = m_pData[srcPosIndices.m256i_i32[1]];
			dataZoom[desPosIndices.m256i_i32[2]] = m_pData[srcPosIndices.m256i_i32[2]];
			dataZoom[desPosIndices.m256i_i32[3]] = m_pData[srcPosIndices.m256i_i32[3]];
			dataZoom[desPosIndices.m256i_i32[4]] = m_pData[srcPosIndices.m256i_i32[4]];
			dataZoom[desPosIndices.m256i_i32[5]] = m_pData[srcPosIndices.m256i_i32[5]];
			dataZoom[desPosIndices.m256i_i32[6]] = m_pData[srcPosIndices.m256i_i32[6]];
			dataZoom[desPosIndices.m256i_i32[7]] = m_pData[srcPosIndices.m256i_i32[7]];
		}

		// Process the remaining elements (if any) without AVX2
		for (size_t x = nZoomDataWidth - remian; x < nZoomDataWidth; x++)
		{
			int srcy = std::min(int(y / fYZoom), m_nDataHeight - 1);
			int srcx = std::min(int(x / fXZoom), m_nDataWidth - 1);
			int srcPos = srcy * m_nDataWidth + srcx;
			int desPos = y * nZoomDataWidth + x;
			dataZoom[desPos] = m_pData[srcPos];
		}
	}
	delete[] srcX;
	delete[] srcY;
}
相关推荐
荒古前7 分钟前
龟兔赛跑 PTA
c语言·算法
Colinnian10 分钟前
Codeforces Round 994 (Div. 2)-D题
算法·动态规划
用户00993831430116 分钟前
代码随想录算法训练营第十三天 | 二叉树part01
数据结构·算法
shinelord明20 分钟前
【再谈设计模式】享元模式~对象共享的优化妙手
开发语言·数据结构·算法·设计模式·软件工程
დ旧言~26 分钟前
专题八:背包问题
算法·leetcode·动态规划·推荐算法
_WndProc43 分钟前
C++ 日志输出
开发语言·c++·算法
努力学习编程的伍大侠1 小时前
基础排序算法
数据结构·c++·算法
XiaoLeisj1 小时前
【递归,搜索与回溯算法 & 综合练习】深入理解暴搜决策树:递归,搜索与回溯算法综合小专题(二)
数据结构·算法·leetcode·决策树·深度优先·剪枝