神经网络 梯度与神经元参数w、b关系;梯度与导数关系

参考:https://blog.csdn.net/weixin_44259490/article/details/90295146

视频:https://www.bilibili.com/video/BV1a14y167vh

概念

梯度与w的关系可以用梯度下降公式来表示:w=w−α ∂ c o s t ∂ w \frac{\partial cost}{\partial w} ∂w∂cost,其中w表示网络的权重, ∂ c o s t ∂ w \frac{\partial cost}{\partial w} ∂w∂cost表示损失函数对权重w的导数,即梯度,α为学习率。

w=w−α ∂ c o s t ∂ w \frac{\partial cost}{\partial w} ∂w∂cost

梯度下降是一种常用的优化算法,用于更新网络的权重和偏置,以最小化损失函数。

案例

一个神经网络包括很多神经元,每个神经元都有参数w、b,所以每个神经元都对应有对w、b的梯度,然后更新w、b

简单案例参考:

w的梯度:

更新梯度: w = w - eta * dw

求b的梯度

更新梯度: b = b - eta * db

梯度与导数关系

梯度与导数关系:

导数和梯度都是微积分中的重要概念,它们之间存在密切的联系。

导数是函数在某一点处的切线斜率,它表示函数在该点处的变化率。对于一个函数f(x),它在点x_0处的导数可以表示为f^\prime(x_0)。

梯度是一个向量,它表示函数在某一点处的最大变化率方向。对于一个多元函数f(x_1,x_2,\cdots,x_n),它在点(x_1,x_2,\cdots,x_n)处的梯度可以表示为\nabla

f(x_1,x_2,\cdots,x_n)。

在一元函数的情况下,导数和梯度是等价的,因为函数在某一点处的导数就是该点处切线的斜率,也就是函数在该点处的梯度方向。

在多元函数的情况下,导数是一个标量,而梯度是一个向量。梯度的方向是函数在该点处变化最快的方向,其大小表示函数在该方向上的变化率。导数可以看作是梯度在某个特定方向上的分量。

在优化问题中,梯度扮演着重要的角色。梯度下降法是一种常用的优化算法,它通过沿着函数的梯度方向移动来找到函数的最小值。

总的来说,导数和梯度都是描述函数变化率的概念,导数是标量,而梯度是向量。在多元函数的情况下,梯度提供了函数在各个方向上的变化信息,对于优化问题和数据分析等领域具有重要的应用。

相关推荐
康康的AI博客3 分钟前
多模态大一统:从GPT-4突破到AI领域质的飞跃之路
人工智能·ai
咚咚王者6 分钟前
人工智能之核心基础 机器学习 第十九章 强化学习入门
人工智能·机器学习
flying_13148 分钟前
图神经网络分享系列-GGNN(GATED GRAPH SEQUENCE NEURAL NETWORKS)(一)
人工智能·深度学习·神经网络·图神经网络·ggnn·门控机制·图特征学习
Hcoco_me12 分钟前
大模型面试题89:GPU的内存结构是什么样的?
人工智能·算法·机器学习·chatgpt·机器人
sanggou20 分钟前
Spring Boot 中基于 WebClient 的 SSE 流式接口实战
java·人工智能
DREAM依旧24 分钟前
本地微调的Ollama模型部署到Dify平台上
人工智能·python
辰阳星宇24 分钟前
【工具调用】BFCL榜单数据分析
人工智能·数据挖掘·数据分析
小陈phd25 分钟前
langGraph从入门到精通(九)——基于LangGraph构建具备多工具调用与自动化摘要能力的智能 Agent
人工智能·python·langchain
wishchin26 分钟前
Jetson Orin Trt: No CMAKE_CUDA_COMPILER could be found
linux·运维·深度学习
Das131 分钟前
【机器学习】07_降维与度量学习
人工智能·学习·机器学习