神经网络 梯度与神经元参数w、b关系;梯度与导数关系

参考:https://blog.csdn.net/weixin_44259490/article/details/90295146

视频:https://www.bilibili.com/video/BV1a14y167vh

概念

梯度与w的关系可以用梯度下降公式来表示:w=w−α ∂ c o s t ∂ w \frac{\partial cost}{\partial w} ∂w∂cost,其中w表示网络的权重, ∂ c o s t ∂ w \frac{\partial cost}{\partial w} ∂w∂cost表示损失函数对权重w的导数,即梯度,α为学习率。

w=w−α ∂ c o s t ∂ w \frac{\partial cost}{\partial w} ∂w∂cost

梯度下降是一种常用的优化算法,用于更新网络的权重和偏置,以最小化损失函数。

案例

一个神经网络包括很多神经元,每个神经元都有参数w、b,所以每个神经元都对应有对w、b的梯度,然后更新w、b

简单案例参考:

w的梯度:

更新梯度: w = w - eta * dw

求b的梯度

更新梯度: b = b - eta * db

梯度与导数关系

梯度与导数关系:

导数和梯度都是微积分中的重要概念,它们之间存在密切的联系。

导数是函数在某一点处的切线斜率,它表示函数在该点处的变化率。对于一个函数f(x),它在点x_0处的导数可以表示为f^\prime(x_0)。

梯度是一个向量,它表示函数在某一点处的最大变化率方向。对于一个多元函数f(x_1,x_2,\cdots,x_n),它在点(x_1,x_2,\cdots,x_n)处的梯度可以表示为\nabla

f(x_1,x_2,\cdots,x_n)。

在一元函数的情况下,导数和梯度是等价的,因为函数在某一点处的导数就是该点处切线的斜率,也就是函数在该点处的梯度方向。

在多元函数的情况下,导数是一个标量,而梯度是一个向量。梯度的方向是函数在该点处变化最快的方向,其大小表示函数在该方向上的变化率。导数可以看作是梯度在某个特定方向上的分量。

在优化问题中,梯度扮演着重要的角色。梯度下降法是一种常用的优化算法,它通过沿着函数的梯度方向移动来找到函数的最小值。

总的来说,导数和梯度都是描述函数变化率的概念,导数是标量,而梯度是向量。在多元函数的情况下,梯度提供了函数在各个方向上的变化信息,对于优化问题和数据分析等领域具有重要的应用。

相关推荐
Allenlzcoder几秒前
掌握机器学习算法及其关键超参数
人工智能·机器学习·超参数
LaughingZhu1 分钟前
Product Hunt 每日热榜 | 2025-10-26
人工智能·经验分享·搜索引擎·产品运营
2401_841495642 分钟前
【自然语言处理】Transformer模型
人工智能·python·深度学习·算法·语言模型·自然语言处理·transformer
KG_LLM图谱增强大模型2 分钟前
[ICAIS2025]探索LLM驱动的知识图谱构建:技术机制、方法对比与未来方向
人工智能·知识图谱·graphrag·知识图谱增强大模型
CH_Qing3 分钟前
【ROS2】驱动开发-雷达篇
人工智能·ros2·1024程序员节
孤廖3 分钟前
面试官问 Linux 编译调试?gcc 编译流程 + gdb 断点调试 + git 版本控制,连 Makefile 都标好了
linux·服务器·c++·人工智能·git·算法·github
星期天要睡觉11 分钟前
什么是提示词(Prompt),提示词类型、结构解析
人工智能·语言模型
深度学习lover19 分钟前
<数据集>yolo煤矿安全帽识别数据集<目标检测>
人工智能·python·深度学习·yolo·目标检测·计算机视觉·煤矿安全帽识别
前端双越老师28 分钟前
建议应届毕业生不要再做前端开发了
人工智能·面试·ai编程
aneasystone本尊32 分钟前
学习 Dify 的工具系统
人工智能