深度学习模型部署(番外3)神经网络不同层的量化方法

神经网络层量化

批归一化层Batch Normalization(BN层)

关于归一化的原理可以看之前的这篇blog:BatchNorm原理与应用

批归一化在推理过程中会被融合到上一层或者下一层中,这种处理方式被称为批归一化折叠。这样可以减少量化,也可以减少属于的运算和读写,提高推理速度。

例如对于全连接层 y = W X + b y = WX+b y=WX+b后的批归一化层:
y = B a t c h N o r m ( W X + b ) = B a t c h N o r m ( W X ) = γ ( W x − μ σ 2 + ϵ ) + β = γ W x σ 2 + ϵ + ( β − γ μ σ 2 + ϵ ) = W ~ X + b ~ \begin{align} y& = BatchNorm(WX+b) \\ & = BatchNorm(WX) \\ & = \gamma(\frac{Wx-\mu }{\sqrt[]{\sigma^2+\epsilon } } )+\beta \\ & = \frac{\gamma Wx}{\sqrt[]{\sigma^2+\epsilon } } +(\beta-\frac{\gamma \mu}{\sqrt[]{\sigma^2+\epsilon } }) \\ & = \widetilde{W}X+\widetilde{b} \end{align} y=BatchNorm(WX+b)=BatchNorm(WX)=γ(σ2+ϵ Wx−μ)+β=σ2+ϵ γWx+(β−σ2+ϵ γμ)=W X+b

从而就将BN层融入到了全连接层的参数中
W ~ k , : = γ k W k , : σ k 2 + ϵ , b ~ k = β k − γ k μ k σ k 2 + ϵ . \begin{aligned} \widetilde{\mathbf{W}}_{k,:}& =\frac{\boldsymbol{\gamma}k\mathbf{W}{k,:}}{\sqrt{\mathbf{\sigma}k^2+\epsilon}}, \\ \widetilde{\mathbf{b}}{k}& =\boldsymbol{\beta}_k-\frac{\boldsymbol{\gamma}_k\boldsymbol{\mu}_k}{\sqrt{\mathbf{\sigma}_k^2+\epsilon}}. \end{aligned} W k,:b k=σk2+ϵ γkWk,:,=βk−σk2+ϵ γkμk.

激活函数层

一般线性层之后都会跟一个激活函数层,从底层的角度考虑,如果在线性层计算完后将数据从寄存器放回内存,再取出来进行非线性层计算,这种方法需要进行读取,非常浪费时间,那么是否能考虑把激活函数层也进行量化,让其可以和量化过的线性层同用定点运算,这样就可以不用放回再取出了,可以直接接着运行。激活函数的种类有很多,像ReLU这种比较简单的激活函数,很容易量化,但是像sigmoid这种激活函数就很难量化,需要复杂的支持。如果不能量化,我们需要在激活函数前后各加一个量化器,这样对精度的影响非常大,很多新的激活函数带来的精度提升在量化后会降低很多。

池化层

不同的池化层,量化方法也不同。

对于最大池化,输出就来自输入中的最大值,所以对于activation不需要进行量化。

但是对于平均池化,计算出的平均值不一定是一个整数,所以要对activation进行量化,但是输入和输出的范围是差不多的,所以可以公用一个量化器。

实现

pytorch对于量化提供了三种方案:

  • Eager Mode quantization:自己选择量化,自己选择融合
  • FX Graph Mode Quantization:提供了自动量化,自动评估,但是跟nn.Module的兼容性需要用户自己负责,比第一种方案自动化程度高一些
  • PyTorch 2 Export Quantization:pytorch2.1新引入的量化方案,自动化程度更高,也是pytorch官方推荐新手用的方案。
    相关介绍的链接:pytorch官方文档
    一个简单训练后静态量化的demo:
python 复制代码
import torch

# define a floating point model where some layers could be statically quantized
class M(torch.nn.Module):
    def __init__(self):
        super().__init__()
        # QuantStub 将float tensor转化为量化表示
        self.quant = torch.ao.quantization.QuantStub()
        self.conv = torch.nn.Conv2d(1, 1, 1)
        self.relu = torch.nn.ReLU()
        # DeQuantStub 将量化表示转化为float tensor
        self.dequant = torch.ao.quantization.DeQuantStub()

    def forward(self, x):
        # 自己手动指定量化模型中的量化点
        x = self.quant(x)
        x = self.conv(x)
        x = self.relu(x)
        # 自己决定何时将量化表示转化为float tensor
        x = self.dequant(x)
        return x


model_fp32 = M()

# 模型必须设置为eval模式,以便在量化过程中,模型的行为和量化后的行为一致
model_fp32.eval()

# 模型量化配置,里面包括了默认的量化配置,可以通过`torch.ao.quantization.get_default_qconfig('x86')`获取
# 对于PC端的量化,推荐使用`x86`,对于移动端的量化,推荐使用`qnnpack`
# 其他的量化配置,比如选择对称量化还是非对称量化,以及MinMax还是L2Norm校准技术,都可以在这里指定
model_fp32.qconfig = torch.ao.quantization.get_default_qconfig('x86')

# 手动进行融合,将一些常见的操作融合在一起,以便后续的量化
# 常见的融合包括`conv + relu`和`conv + batchnorm + relu`
model_fp32_fused = torch.ao.quantization.fuse_modules(model_fp32, [['conv', 'relu']])


# 准备模型,插入观察者,观察激活张量,观察者用于校准量化参数
model_fp32_prepared = torch.ao.quantization.prepare(model_fp32_fused)

# 进行校准,这里输入需要使用代表性的数据,以便观察者能够观察到激活张量的分布,从而计算出量化参数
input_fp32 = torch.randn(4, 1, 4, 4)
model_fp32_prepared(input_fp32)


# 将模型转化为量化模型,这里会将权重量化,计算并存储每个激活张量的scale和bias值,以及用量化实现替换关键操作
model_int8 = torch.ao.quantization.convert(model_fp32_prepared)

# 运行量化模型,这里的计算都是在int8上进行的
res = model_int8(input_fp32)

得益于pytorch,onnxruntime,tensorrt等工具,模型量化以及部署已经变得非常简单,但是有些知识我们还是要学,就如闫令琪老师说的:工具的发展可以简化我们工作流程,但是不能简化我们学习的知识,API是API,知识是知识。

觉得有帮助,请点赞+收藏,thanks

相关推荐
q5673152311 分钟前
在 Bash 中获取 Python 模块变量列
开发语言·python·bash
是萝卜干呀12 分钟前
Backend - Python 爬取网页数据并保存在Excel文件中
python·excel·table·xlwt·爬取网页数据
代码欢乐豆13 分钟前
数据采集之selenium模拟登录
python·selenium·测试工具
喵~来学编程啦20 分钟前
【论文精读】LPT: Long-tailed prompt tuning for image classification
人工智能·深度学习·机器学习·计算机视觉·论文笔记
深圳市青牛科技实业有限公司33 分钟前
【青牛科技】应用方案|D2587A高压大电流DC-DC
人工智能·科技·单片机·嵌入式硬件·机器人·安防监控
狂奔solar1 小时前
yelp数据集上识别潜在的热门商家
开发语言·python
Tassel_YUE1 小时前
网络自动化04:python实现ACL匹配信息(主机与主机信息)
网络·python·自动化
水豚AI课代表1 小时前
分析报告、调研报告、工作方案等的提示词
大数据·人工智能·学习·chatgpt·aigc
几两春秋梦_1 小时前
符号回归概念
人工智能·数据挖掘·回归
聪明的墨菲特i1 小时前
Python爬虫学习
爬虫·python·学习