基于最小二乘递推算法的系统参数辨识matlab仿真

目录

1.程序功能描述

2.测试软件版本以及运行结果展示

3.核心程序

4.本算法原理

5.完整程序


1.程序功能描述

基于最小二乘递推算法的系统参数辨识。对系统的参数a1,b1,a2,b2分别进行估计,计算估计误差以及估计收敛曲线,然后对比不同信噪比下的估计误差。

2.测试软件版本以及运行结果展示

MATLAB2022a版本运行

3.核心程序

复制代码
................................................................

for i=(LEN0+4):LEN
    z(i,1)=-A1*z(i-1,1)-A2*z(i-2,1)+B1*Xin(i-1,1)+B2*Xin(i-2,1)+Noise(i,1); 
    for j=1:N
        z1(i-3,j) = z(N+i-3-j+idx0,1);
        u1(i-3,j) = Xin(N+i-3-j+idx0,1);
    end 
    h  =[-z1(i-3,1) -z1(i-3,2) u1(i-3,1) u1(i-3,2)]';
    K  = P*h/(h'*P*h+1);
    P  =(eye(2*N)-K*h')*P;
    Pest = Pest+K*[z(i,1)-h'*Pest];
    Pest2(:,i) = Pest;     
end


 figure
subplot(221);
k=1:LEN;
semilogy(k,e1,'b');
xlabel('k'); 
ylabel('error'); 
title('误差曲线')
grid on

subplot(222);
k=1:LEN;
semilogy(k,e2,'b');
xlabel('k'); 
ylabel('error'); 
title('误差曲线')
grid on

subplot(223);
k=1:LEN;
semilogy(k,e3,'b');
xlabel('k'); 
ylabel('error'); 
title('误差曲线')
grid on

subplot(224);
k=1:LEN;
semilogy(k,e4,'b');
xlabel('k'); 
ylabel('error'); 
title('误差曲线')
grid on
33

4.本算法原理

最小二乘递推算法是一种在线估计模型参数的方法,特别适用于实时、连续的数据流中进行系统的动态参数辨识。RLS算法的核心思想是利用最新的观测数据不断更新对系统参数的估计,以期达到最小化预测误差平方和的目的。

通过这种递推的方式,RLS可以在每次得到新的观测数据后迅速调整参数估计,并保持计算复杂度相对较低,适合实时应用场合。

5.完整程序

VVV

相关推荐
TracyCoder1231 小时前
LeetCode Hot100(34/100)——98. 验证二叉搜索树
算法·leetcode
A尘埃1 小时前
电信运营商用户分群与精准运营(K-Means聚类)
算法·kmeans·聚类
power 雀儿2 小时前
掩码(Mask)机制 结合 多头自注意力函数
算法
会叫的恐龙2 小时前
C++ 核心知识点汇总(第六日)(字符串)
c++·算法·字符串
小糯米6012 小时前
C++顺序表和vector
开发语言·c++·算法
We་ct3 小时前
LeetCode 56. 合并区间:区间重叠问题的核心解法与代码解析
前端·算法·leetcode·typescript
Lionel6893 小时前
分步实现 Flutter 鸿蒙轮播图核心功能(搜索框 + 指示灯)
算法·图搜索算法
小妖6663 小时前
js 实现快速排序算法
数据结构·算法·排序算法
xsyaaaan3 小时前
代码随想录Day30动态规划:背包问题二维_背包问题一维_416分割等和子集
算法·动态规划
zheyutao4 小时前
字符串哈希
算法