基于最小二乘递推算法的系统参数辨识matlab仿真

目录

1.程序功能描述

2.测试软件版本以及运行结果展示

3.核心程序

4.本算法原理

5.完整程序


1.程序功能描述

基于最小二乘递推算法的系统参数辨识。对系统的参数a1,b1,a2,b2分别进行估计,计算估计误差以及估计收敛曲线,然后对比不同信噪比下的估计误差。

2.测试软件版本以及运行结果展示

MATLAB2022a版本运行

3.核心程序

................................................................

for i=(LEN0+4):LEN
    z(i,1)=-A1*z(i-1,1)-A2*z(i-2,1)+B1*Xin(i-1,1)+B2*Xin(i-2,1)+Noise(i,1); 
    for j=1:N
        z1(i-3,j) = z(N+i-3-j+idx0,1);
        u1(i-3,j) = Xin(N+i-3-j+idx0,1);
    end 
    h  =[-z1(i-3,1) -z1(i-3,2) u1(i-3,1) u1(i-3,2)]';
    K  = P*h/(h'*P*h+1);
    P  =(eye(2*N)-K*h')*P;
    Pest = Pest+K*[z(i,1)-h'*Pest];
    Pest2(:,i) = Pest;     
end


 figure
subplot(221);
k=1:LEN;
semilogy(k,e1,'b');
xlabel('k'); 
ylabel('error'); 
title('误差曲线')
grid on

subplot(222);
k=1:LEN;
semilogy(k,e2,'b');
xlabel('k'); 
ylabel('error'); 
title('误差曲线')
grid on

subplot(223);
k=1:LEN;
semilogy(k,e3,'b');
xlabel('k'); 
ylabel('error'); 
title('误差曲线')
grid on

subplot(224);
k=1:LEN;
semilogy(k,e4,'b');
xlabel('k'); 
ylabel('error'); 
title('误差曲线')
grid on
33

4.本算法原理

最小二乘递推算法是一种在线估计模型参数的方法,特别适用于实时、连续的数据流中进行系统的动态参数辨识。RLS算法的核心思想是利用最新的观测数据不断更新对系统参数的估计,以期达到最小化预测误差平方和的目的。

通过这种递推的方式,RLS可以在每次得到新的观测数据后迅速调整参数估计,并保持计算复杂度相对较低,适合实时应用场合。

5.完整程序

VVV

相关推荐
云卓SKYDROID10 分钟前
除草机器人算法以及技术详解!
算法·机器人·科普·高科技·云卓科技·算法技术
半盏茶香34 分钟前
【C语言】分支和循环详解(下)猜数字游戏
c语言·开发语言·c++·算法·游戏
徐子童38 分钟前
双指针算法习题解答
算法
想要打 Acm 的小周同学呀1 小时前
LRU缓存算法
java·算法·缓存
劲夫学编程2 小时前
leetcode:杨辉三角
算法·leetcode·职场和发展
毕竟秋山澪2 小时前
孤岛的总面积(Dfs C#
算法·深度优先
浮生如梦_4 小时前
Halcon基于laws纹理特征的SVM分类
图像处理·人工智能·算法·支持向量机·计算机视觉·分类·视觉检测
励志成为嵌入式工程师6 小时前
c语言简单编程练习9
c语言·开发语言·算法·vim
捕鲸叉6 小时前
创建线程时传递参数给线程
开发语言·c++·算法
A charmer6 小时前
【C++】vector 类深度解析:探索动态数组的奥秘
开发语言·c++·算法