基于最小二乘递推算法的系统参数辨识matlab仿真

目录

1.程序功能描述

2.测试软件版本以及运行结果展示

3.核心程序

4.本算法原理

5.完整程序


1.程序功能描述

基于最小二乘递推算法的系统参数辨识。对系统的参数a1,b1,a2,b2分别进行估计,计算估计误差以及估计收敛曲线,然后对比不同信噪比下的估计误差。

2.测试软件版本以及运行结果展示

MATLAB2022a版本运行

3.核心程序

复制代码
................................................................

for i=(LEN0+4):LEN
    z(i,1)=-A1*z(i-1,1)-A2*z(i-2,1)+B1*Xin(i-1,1)+B2*Xin(i-2,1)+Noise(i,1); 
    for j=1:N
        z1(i-3,j) = z(N+i-3-j+idx0,1);
        u1(i-3,j) = Xin(N+i-3-j+idx0,1);
    end 
    h  =[-z1(i-3,1) -z1(i-3,2) u1(i-3,1) u1(i-3,2)]';
    K  = P*h/(h'*P*h+1);
    P  =(eye(2*N)-K*h')*P;
    Pest = Pest+K*[z(i,1)-h'*Pest];
    Pest2(:,i) = Pest;     
end


 figure
subplot(221);
k=1:LEN;
semilogy(k,e1,'b');
xlabel('k'); 
ylabel('error'); 
title('误差曲线')
grid on

subplot(222);
k=1:LEN;
semilogy(k,e2,'b');
xlabel('k'); 
ylabel('error'); 
title('误差曲线')
grid on

subplot(223);
k=1:LEN;
semilogy(k,e3,'b');
xlabel('k'); 
ylabel('error'); 
title('误差曲线')
grid on

subplot(224);
k=1:LEN;
semilogy(k,e4,'b');
xlabel('k'); 
ylabel('error'); 
title('误差曲线')
grid on
33

4.本算法原理

最小二乘递推算法是一种在线估计模型参数的方法,特别适用于实时、连续的数据流中进行系统的动态参数辨识。RLS算法的核心思想是利用最新的观测数据不断更新对系统参数的估计,以期达到最小化预测误差平方和的目的。

通过这种递推的方式,RLS可以在每次得到新的观测数据后迅速调整参数估计,并保持计算复杂度相对较低,适合实时应用场合。

5.完整程序

VVV

相关推荐
二进制person5 分钟前
Java SE--方法的使用
java·开发语言·算法
OneQ66631 分钟前
C++讲解---创建日期类
开发语言·c++·算法
JoJo_Way38 分钟前
LeetCode三数之和-js题解
javascript·算法·leetcode
.30-06Springfield1 小时前
人工智能概念之七:集成学习思想(Bagging、Boosting、Stacking)
人工智能·算法·机器学习·集成学习
凌肖战3 小时前
力扣网C语言编程题:在数组中查找目标值位置之二分查找法
c语言·算法·leetcode
weixin_478689763 小时前
十大排序算法汇总
java·算法·排序算法
luofeiju4 小时前
使用LU分解求解线性方程组
线性代数·算法
SKYDROID云卓小助手4 小时前
无人设备遥控器之自动调整编码技术篇
人工智能·嵌入式硬件·算法·自动化·信号处理
ysa0510305 小时前
数论基础知识和模板
数据结构·c++·笔记·算法
GEEK零零七5 小时前
Leetcode 1103. 分糖果 II
数学·算法·leetcode·等差数列