基于最小二乘递推算法的系统参数辨识matlab仿真

目录

1.程序功能描述

2.测试软件版本以及运行结果展示

3.核心程序

4.本算法原理

5.完整程序


1.程序功能描述

基于最小二乘递推算法的系统参数辨识。对系统的参数a1,b1,a2,b2分别进行估计,计算估计误差以及估计收敛曲线,然后对比不同信噪比下的估计误差。

2.测试软件版本以及运行结果展示

MATLAB2022a版本运行

3.核心程序

复制代码
................................................................

for i=(LEN0+4):LEN
    z(i,1)=-A1*z(i-1,1)-A2*z(i-2,1)+B1*Xin(i-1,1)+B2*Xin(i-2,1)+Noise(i,1); 
    for j=1:N
        z1(i-3,j) = z(N+i-3-j+idx0,1);
        u1(i-3,j) = Xin(N+i-3-j+idx0,1);
    end 
    h  =[-z1(i-3,1) -z1(i-3,2) u1(i-3,1) u1(i-3,2)]';
    K  = P*h/(h'*P*h+1);
    P  =(eye(2*N)-K*h')*P;
    Pest = Pest+K*[z(i,1)-h'*Pest];
    Pest2(:,i) = Pest;     
end


 figure
subplot(221);
k=1:LEN;
semilogy(k,e1,'b');
xlabel('k'); 
ylabel('error'); 
title('误差曲线')
grid on

subplot(222);
k=1:LEN;
semilogy(k,e2,'b');
xlabel('k'); 
ylabel('error'); 
title('误差曲线')
grid on

subplot(223);
k=1:LEN;
semilogy(k,e3,'b');
xlabel('k'); 
ylabel('error'); 
title('误差曲线')
grid on

subplot(224);
k=1:LEN;
semilogy(k,e4,'b');
xlabel('k'); 
ylabel('error'); 
title('误差曲线')
grid on
33

4.本算法原理

最小二乘递推算法是一种在线估计模型参数的方法,特别适用于实时、连续的数据流中进行系统的动态参数辨识。RLS算法的核心思想是利用最新的观测数据不断更新对系统参数的估计,以期达到最小化预测误差平方和的目的。

通过这种递推的方式,RLS可以在每次得到新的观测数据后迅速调整参数估计,并保持计算复杂度相对较低,适合实时应用场合。

5.完整程序

VVV

相关推荐
珊瑚里的鱼23 分钟前
【滑动窗口】LeetCode 1658题解 | 将 x 减到 0 的最小操作数
开发语言·c++·笔记·算法·leetcode·stl
落樱弥城27 分钟前
角点特征:从传统算法到深度学习算法演进
人工智能·深度学习·算法
共享家95271 小时前
哈希的原理、实现
c++·算法
进击的小白菜1 小时前
用Java实现单词搜索(LeetCode 79)——回溯算法详解
java·算法·leetcode
珂朵莉MM1 小时前
2024 睿抗机器人开发者大赛CAIP-编程技能赛-专科组(国赛)解题报告 | 珂学家
开发语言·人工智能·算法·leetcode·职场和发展·深度优先·图论
小智学长 | 嵌入式1 小时前
进阶-数据结构部分:2、常用排序算法
java·数据结构·算法
少了一只鹅1 小时前
字符函数和字符串函数
c语言·算法
Dr.9272 小时前
1-10 目录树
java·数据结构·算法
子豪-中国机器人3 小时前
C++ 蓝桥 STEMA 省选拔赛模拟测试题(第一套)
开发语言·c++·算法
callJJ3 小时前
Bellman - Ford 算法与 SPFA 算法求解最短路径问题 ——从零开始的图论讲解(4)
数据结构·算法·蓝桥杯·图论·单源最短路径·bellman- ford算法