基于最小二乘递推算法的系统参数辨识matlab仿真

目录

1.程序功能描述

2.测试软件版本以及运行结果展示

3.核心程序

4.本算法原理

5.完整程序


1.程序功能描述

基于最小二乘递推算法的系统参数辨识。对系统的参数a1,b1,a2,b2分别进行估计,计算估计误差以及估计收敛曲线,然后对比不同信噪比下的估计误差。

2.测试软件版本以及运行结果展示

MATLAB2022a版本运行

3.核心程序

复制代码
................................................................

for i=(LEN0+4):LEN
    z(i,1)=-A1*z(i-1,1)-A2*z(i-2,1)+B1*Xin(i-1,1)+B2*Xin(i-2,1)+Noise(i,1); 
    for j=1:N
        z1(i-3,j) = z(N+i-3-j+idx0,1);
        u1(i-3,j) = Xin(N+i-3-j+idx0,1);
    end 
    h  =[-z1(i-3,1) -z1(i-3,2) u1(i-3,1) u1(i-3,2)]';
    K  = P*h/(h'*P*h+1);
    P  =(eye(2*N)-K*h')*P;
    Pest = Pest+K*[z(i,1)-h'*Pest];
    Pest2(:,i) = Pest;     
end


 figure
subplot(221);
k=1:LEN;
semilogy(k,e1,'b');
xlabel('k'); 
ylabel('error'); 
title('误差曲线')
grid on

subplot(222);
k=1:LEN;
semilogy(k,e2,'b');
xlabel('k'); 
ylabel('error'); 
title('误差曲线')
grid on

subplot(223);
k=1:LEN;
semilogy(k,e3,'b');
xlabel('k'); 
ylabel('error'); 
title('误差曲线')
grid on

subplot(224);
k=1:LEN;
semilogy(k,e4,'b');
xlabel('k'); 
ylabel('error'); 
title('误差曲线')
grid on
33

4.本算法原理

最小二乘递推算法是一种在线估计模型参数的方法,特别适用于实时、连续的数据流中进行系统的动态参数辨识。RLS算法的核心思想是利用最新的观测数据不断更新对系统参数的估计,以期达到最小化预测误差平方和的目的。

通过这种递推的方式,RLS可以在每次得到新的观测数据后迅速调整参数估计,并保持计算复杂度相对较低,适合实时应用场合。

5.完整程序

VVV

相关推荐
suoge2233 分钟前
六面体传热单元Matlab有限元编程:三大类边界条件(上篇)| 固定温度边界条件 | 表面热通量边界条件 | 热对流边界条件)
matlab·有限元编程·传热有限元·热传导有限元·六面体热单元·边界条件·对流换热
McGrady-1757 分钟前
拓扑导航 vs 几何导航的具体实现位置
算法
副露のmagic14 分钟前
更弱智的算法学习 day24
python·学习·算法
颜酱16 分钟前
前端必备动态规划的10道经典题目
前端·后端·算法
wen__xvn26 分钟前
代码随想录算法训练营DAY10第五章 栈与队列part01
java·前端·算法
cpp_25011 小时前
P2708 硬币翻转
数据结构·c++·算法·题解·洛谷
程序猿阿伟2 小时前
《Python复杂结构静态分析秘籍:递归类型注解的深度实践指南》
java·数据结构·算法
bubiyoushang8882 小时前
LFM脉冲串信号的模糊函数
算法
踩坑记录2 小时前
leetcode hot100 11.盛最多水的容器 medium 双指针
算法·leetcode·职场和发展
MM_MS3 小时前
Halcon基础知识点及其算子用法
开发语言·人工智能·python·算法·计算机视觉·视觉检测