节前,我们组织了一场算法岗技术&面试讨论会,邀请了一些互联网大厂同学、参加社招和校招面试的同学,针对大模型技术趋势、大模型落地项目经验分享、新手如何入门算法岗、该如何备战、面试常考点分享等热门话题进行了深入的讨论。
今天整理我们社群一个同学面试唯品会 NLP 算法方向的面试题,分享给大家,希望对后续找工作的有所帮助。喜欢记得点赞、收藏、关注。更多技术交流&面经学习,可以加入我们。
- 目前实习工作, 为什要用聚类来评估文本向量化表示?
- DBSCAN算法原理(简历有)
- 生成模型的的Category不存在预定义集合怎么办
- UIE+Category具体流程 (实习)
- 分类评估用的是什么指标
- bert模型中文本到id转化的过程是怎么样?
- 现有流行的模型相对于transformer,多头注意力有哪些改进/不同
- 现有流行的模型相对于transformer,layernorm 层改进/不同
a. 正态度分布 - 现有流行的模型相对于transformer,embedding的改进/不同
- 现有模型之间(chatglm baichuan llama)的不同主要是哪些方面
- 常见的高效微调方法有哪些(p-tuning v1/v2 prompt-tuning prefix_tuning), 他们是如何做到节省GPU的,GPU上存放的是什么
- 怎么进行梯度更新的, 有哪些优化函数
- 现有流行的各个模型的编码方法有了解吗, 有什么不同呢, 简单介绍一下
- ChatGLM和transformer在编码和注意力方面有哪些区别
- Lora的降秩是所有都降吗, 还是降哪些?
- 一般用高效微调来干嘛
- 序列标注有了解吗, CRF有了解吗
- 场景题 现有三个词 权重分别是[0.2 0.3 0.5] 可以使用random, 进行k次(亿级别)采样, 设计一个采样算法
反问
高效微调, GPU是如何存储的?1. 优化参数 2. 梯度参数 3. 模型参数
总结
面试官人挺好的 和之前面试的感觉不一样 面试过程可以学到很多东西。
还是自己太菜了 还是得练得沉淀
技术交流群
前沿技术资讯、算法交流、求职内推、算法竞赛、面试交流(校招、社招、实习)等、与 10000+来自港科大、北大、清华、中科院、CMU、腾讯、百度等名校名企开发者互动交流~
我们建了算法岗技术与面试交流群, 想要进交流群、需要源码&资料、提升技术的同学,可以直接加微信号:mlc2060。加的时候备注一下:研究方向 +学校/公司+CSDN,即可。然后就可以拉你进群了。
方式①、微信搜索公众号:机器学习社区,后台回复:加群
方式②、添加微信号:mlc2060,备注:技术交流
用通俗易懂方式讲解系列
- 用通俗易懂的方式讲解:自然语言处理初学者指南(附1000页的PPT讲解)
- 用通俗易懂的方式讲解:1.6万字全面掌握 BERT
- 用通俗易懂的方式讲解:NLP 这样学习才是正确路线
- 用通俗易懂的方式讲解:28张图全解深度学习知识!
- 用通俗易懂的方式讲解:不用再找了,这就是 NLP 方向最全面试题库
- 用通俗易懂的方式讲解:实体关系抽取入门教程
- 用通俗易懂的方式讲解:灵魂 20 问帮你彻底搞定Transformer
- 用通俗易懂的方式讲解:图解 Transformer 架构
- 用通俗易懂的方式讲解:大模型算法面经指南(附答案)
- 用通俗易懂的方式讲解:十分钟部署清华 ChatGLM-6B,实测效果超预期
- 用通俗易懂的方式讲解:内容讲解+代码案例,轻松掌握大模型应用框架 LangChain
- 用通俗易懂的方式讲解:如何用大语言模型构建一个知识问答系统
- 用通俗易懂的方式讲解:最全的大模型 RAG 技术概览
- 用通俗易懂的方式讲解:利用 LangChain 和 Neo4j 向量索引,构建一个RAG应用程序
- 用通俗易懂的方式讲解:使用 Neo4j 和 LangChain 集成非结构化知识图增强 QA
- 用通俗易懂的方式讲解:面了 5 家知名企业的NLP算法岗(大模型方向),被考倒了。。。。。
- 用通俗易懂的方式讲解:NLP 算法实习岗,对我后续找工作太重要了!。
- 用通俗易懂的方式讲解:理想汽车大模型算法工程师面试,被问的瑟瑟发抖。。。。
- 用通俗易懂的方式讲解:基于 Langchain-Chatchat,我搭建了一个本地知识库问答系统
- 用通俗易懂的方式讲解:面试字节大模型算法岗(实习)
- 用通俗易懂的方式讲解:大模型算法岗(含实习)最走心的总结
- 用通俗易懂的方式讲解:大模型微调方法汇总