吴恩达机器学习笔记十六 如何debug一个学习算法 模型评估 模型选择和训练 交叉验证测试集

如果算法预测出的结果不太好,可以考虑以下几个方面:

获得更多的训练样本

采用更少的特征

尝试获取更多的特征

增加多项式特征

增大或减小 λ

模型评估(evaluate model)

例如房价预测,用五个数据训练出的模型能很好的拟合这几个数据,但不能泛化到新的数据。

将数据按70%、30%的比例分成两份,一份是训练集,一份是测试集。

模型选择

一种有缺陷的方法:

可以计算一阶多项式、二阶多项式、...、十阶多项式的J(w,b),看看哪一个更小 ,就选择哪个作为模型。但这样仍可能出现泛化的不好的情况。

好的方法:

将数据集分成三部分,60%训练集(training set) ,20%交叉验证集(cross validation set / developent set / dev set),20%测试集(test set)

三个部分的 error 计算公式如下

可以选择交叉测试集误差最小的那个,然后用测试集误差来评估模型泛化的好坏。模型的选择要看模型在训练集和交叉验证集的好坏!不看测试集的结果。

相关推荐
虹科网络安全2 小时前
艾体宝方案 | 释放数据潜能 · 构建 AI 驱动的自动驾驶实时数据处理与智能筛选平台
人工智能·机器学习·自动驾驶
70asunflower3 小时前
基于锚点(聚类)的LLM微调
机器学习·数据挖掘·聚类
Hcoco_me4 小时前
大模型面试题84:是否了解 OpenAI 提出的Clip,它和SigLip有什么区别?为什么SigLip效果更好?
人工智能·算法·机器学习·chatgpt·机器人
BHXDML4 小时前
第九章:EM 算法
人工智能·算法·机器学习
q_35488851534 小时前
AI大模型:python新能源汽车推荐系统 协同过滤推荐算法 Echarts可视化 Django框架 大数据毕业设计(源码+文档)✅
大数据·人工智能·python·机器学习·信息可视化·汽车·推荐算法
brent4236 小时前
DAY54 CBAM注意力
人工智能·深度学习·机器学习
Hcoco_me6 小时前
大模型面试题90:half2,float4这种优化 与 pack优化的底层原理是什么?
人工智能·算法·机器学习·langchain·vllm
卡尔AI工坊8 小时前
Andrej Karpathy:过去一年大模型的六个关键转折
人工智能·经验分享·深度学习·机器学习·ai编程
jay神8 小时前
指纹识别考勤打卡系统 - 完整源码项目
人工智能·深度学习·机器学习·计算机视觉·毕业设计
高洁019 小时前
数字孪生与数字样机的技术基础:建模与仿真
python·算法·机器学习·transformer·知识图谱