吴恩达机器学习笔记十六 如何debug一个学习算法 模型评估 模型选择和训练 交叉验证测试集

如果算法预测出的结果不太好,可以考虑以下几个方面:

获得更多的训练样本

采用更少的特征

尝试获取更多的特征

增加多项式特征

增大或减小 λ

模型评估(evaluate model)

例如房价预测,用五个数据训练出的模型能很好的拟合这几个数据,但不能泛化到新的数据。

将数据按70%、30%的比例分成两份,一份是训练集,一份是测试集。

模型选择

一种有缺陷的方法:

可以计算一阶多项式、二阶多项式、...、十阶多项式的J(w,b),看看哪一个更小 ,就选择哪个作为模型。但这样仍可能出现泛化的不好的情况。

好的方法:

将数据集分成三部分,60%训练集(training set) ,20%交叉验证集(cross validation set / developent set / dev set),20%测试集(test set)

三个部分的 error 计算公式如下

可以选择交叉测试集误差最小的那个,然后用测试集误差来评估模型泛化的好坏。模型的选择要看模型在训练集和交叉验证集的好坏!不看测试集的结果。

相关推荐
大写-凌祁1 小时前
论文阅读:HySCDG生成式数据处理流程
论文阅读·人工智能·笔记·python·机器学习
柯南二号2 小时前
深入理解 Agent 与 LLM 的区别:从智能体到语言模型
人工智能·机器学习·llm·agent
C137的本贾尼3 小时前
(每日一道算法题)二叉树剪枝
算法·机器学习·剪枝
Blossom.1183 小时前
使用Python和Flask构建简单的机器学习API
人工智能·python·深度学习·目标检测·机器学习·数据挖掘·flask
Lilith的AI学习日记4 小时前
什么是预训练?深入解读大模型AI的“高考集训”
开发语言·人工智能·深度学习·神经网络·机器学习·ai编程
我不是小upper5 小时前
SVM超详细原理总结
人工智能·机器学习·支持向量机
白杆杆红伞伞6 小时前
10_聚类
机器学习·支持向量机·聚类
小天才才7 小时前
【自然语言处理】大模型时代的数据标注(主动学习)
人工智能·机器学习·语言模型·自然语言处理
苏苏susuus7 小时前
机器学习:集成学习概念和分类、随机森林、Adaboost、GBDT
机器学习·分类·集成学习
databook8 小时前
当机器学习遇见压缩感知:用少量数据重建完整世界
python·机器学习·scikit-learn