理解和解释ChatGPT:一种生成性大型语言模型的三部分框架

理解和解释ChatGPT:一种生成性大型语言模型的三部分框架

**摘要:**本文提供了对生成性大型语言模型(LLMs),尤其是ChatGPT的简明解释。重点在于三个关键组件:变压器架构、语言模型预训练和对齐过程。

关键组件:

  1. 变压器架构:几乎所有现代语言模型的基础,特别是解码器只变压器架构,用于处理文本序列并生成输出。
  2. 语言模型预训练:通过大量未标注文本进行自监督学习,以预测下一个令牌,形成基础模型。
  3. 对齐过程:通过监督微调(SFT)和人类反馈增强学习(RLHF)来细化模型,使其更好地符合用户意图,提高有用性和无害性。

LLM的演变:

  • 初始时基于简单的递归神经网络架构,如GPT和GPT-2。
  • GPT-3等后期模型显示出在规模上的提升,证实了更大的模型和更多的训练数据带来更佳性能。
  • 对齐过程是最新进展,显著提升了模型的有效性和用户友好度。

应用:

  • 可通过上下文学习(即写出解决特定任务的提示)或进一步针对特定任务进行微调,将LLMs应用于实际问题。

结论:

本文简化了对ChatGPT等生成性LLMs的理解,揭示了其核心技术和应用方法。随着AI技术的发展,简明有效地传达这些概念变得越来越重要。

相关推荐
ljd21032312413 分钟前
opencv函数展示2
人工智能·opencv·计算机视觉
戈云 110620 分钟前
Spark-SQL
人工智能·spark
明明真系叻35 分钟前
2025.4.20机器学习笔记:文献阅读
人工智能·笔记·机器学习
学术小八1 小时前
2025年机电一体化、机器人与人工智能国际学术会议(MRAI 2025)
人工智能·机器人·机电
爱的叹息1 小时前
关于 雷达(Radar) 的详细解析,涵盖其定义、工作原理、分类、关键技术、应用场景、挑战及未来趋势,结合实例帮助理解其核心概念
人工智能·分类·数据挖掘
许泽宇的技术分享1 小时前
.NET MCP 文档
人工智能·.net
TMDOG6661 小时前
TMDOG——语言大模型进行意图分析驱动后端实践
语言模型·rag
anscos1 小时前
Actran声源识别方法连载(二):薄膜模态表面振动识别
人工智能·算法·仿真软件·actran
-曾牛1 小时前
【LangChain4j快速入门】5分钟用Java玩转GPT-4o-mini,Spring Boot整合实战!| 附源码
java·开发语言·人工智能·spring boot·ai·chatgpt
token-go2 小时前
[特殊字符] KoalaAI 1.0.23 震撼升级:GPT-4.1免费畅享,AI革命触手可及!
人工智能