理解和解释ChatGPT:一种生成性大型语言模型的三部分框架

理解和解释ChatGPT:一种生成性大型语言模型的三部分框架

**摘要:**本文提供了对生成性大型语言模型(LLMs),尤其是ChatGPT的简明解释。重点在于三个关键组件:变压器架构、语言模型预训练和对齐过程。

关键组件:

  1. 变压器架构:几乎所有现代语言模型的基础,特别是解码器只变压器架构,用于处理文本序列并生成输出。
  2. 语言模型预训练:通过大量未标注文本进行自监督学习,以预测下一个令牌,形成基础模型。
  3. 对齐过程:通过监督微调(SFT)和人类反馈增强学习(RLHF)来细化模型,使其更好地符合用户意图,提高有用性和无害性。

LLM的演变:

  • 初始时基于简单的递归神经网络架构,如GPT和GPT-2。
  • GPT-3等后期模型显示出在规模上的提升,证实了更大的模型和更多的训练数据带来更佳性能。
  • 对齐过程是最新进展,显著提升了模型的有效性和用户友好度。

应用:

  • 可通过上下文学习(即写出解决特定任务的提示)或进一步针对特定任务进行微调,将LLMs应用于实际问题。

结论:

本文简化了对ChatGPT等生成性LLMs的理解,揭示了其核心技术和应用方法。随着AI技术的发展,简明有效地传达这些概念变得越来越重要。

相关推荐
掘金安东尼几秒前
本地模型 + 云端模型的 Hybrid Inference 架构设计:下一代智能系统的底层范式
人工智能
强盛小灵通专卖员几秒前
煤矿传送带异物检测:深度学习引领煤矿安全新革命!
人工智能·目标检测·sci·研究生·煤矿安全·延毕·传送带
学历真的很重要9 分钟前
PyTorch 零基础入门:从张量到 GPU 加速完全指南
人工智能·pytorch·后端·深度学习·语言模型·职场和发展
mit6.82411 分钟前
[Column] Perplexity 如何构建 AI 版 Google | 模型无关架构 | Vespa AI检索
人工智能
xier_ran26 分钟前
深度学习:梯度检验(Gradient Checking)
人工智能·深度学习·梯度检验
尼古拉斯·纯情暖男·天真·阿玮35 分钟前
基于卷积神经网络的手写数字识别
人工智能·神经网络·cnn
2401_8414956440 分钟前
MoE算法深度解析:从理论架构到行业实践
人工智能·深度学习·机器学习·自然语言处理·大语言模型·moe·混合专家模型
kanimito41 分钟前
大语言模型入门指南:从科普到实战的技术笔记(2)
人工智能·笔记·语言模型
笨鸟笃行42 分钟前
人工智能训练师备考——3.1.1题解
人工智能
小蜜蜂爱编程1 小时前
做DNN的建议 -- 过拟合篇
人工智能·神经网络·dnn