理解和解释ChatGPT:一种生成性大型语言模型的三部分框架

理解和解释ChatGPT:一种生成性大型语言模型的三部分框架

**摘要:**本文提供了对生成性大型语言模型(LLMs),尤其是ChatGPT的简明解释。重点在于三个关键组件:变压器架构、语言模型预训练和对齐过程。

关键组件:

  1. 变压器架构:几乎所有现代语言模型的基础,特别是解码器只变压器架构,用于处理文本序列并生成输出。
  2. 语言模型预训练:通过大量未标注文本进行自监督学习,以预测下一个令牌,形成基础模型。
  3. 对齐过程:通过监督微调(SFT)和人类反馈增强学习(RLHF)来细化模型,使其更好地符合用户意图,提高有用性和无害性。

LLM的演变:

  • 初始时基于简单的递归神经网络架构,如GPT和GPT-2。
  • GPT-3等后期模型显示出在规模上的提升,证实了更大的模型和更多的训练数据带来更佳性能。
  • 对齐过程是最新进展,显著提升了模型的有效性和用户友好度。

应用:

  • 可通过上下文学习(即写出解决特定任务的提示)或进一步针对特定任务进行微调,将LLMs应用于实际问题。

结论:

本文简化了对ChatGPT等生成性LLMs的理解,揭示了其核心技术和应用方法。随着AI技术的发展,简明有效地传达这些概念变得越来越重要。

相关推荐
飞哥数智坊4 小时前
GPT-5-Codex 发布,Codex 正在取代 Claude
人工智能·ai编程
倔强青铜三4 小时前
苦练Python第46天:文件写入与上下文管理器
人工智能·python·面试
虫无涯5 小时前
Dify Agent + AntV 实战:从 0 到 1 打造数据可视化解决方案
人工智能
Dm_dotnet7 小时前
公益站Agent Router注册送200刀额度竟然是真的
人工智能
算家计算7 小时前
7B参数拿下30个世界第一!Hunyuan-MT-7B本地部署教程:腾讯混元开源业界首个翻译集成模型
人工智能·开源
机器之心8 小时前
LLM开源2.0大洗牌:60个出局,39个上桌,AI Coding疯魔,TensorFlow已死
人工智能·openai
Juchecar9 小时前
交叉熵:深度学习中最常用的损失函数
人工智能
林木森ai9 小时前
爆款AI动物运动会视频,用Coze(扣子)一键搞定全流程(附保姆级拆解)
人工智能·aigc
聚客AI9 小时前
🙋‍♀️Transformer训练与推理全流程:从输入处理到输出生成
人工智能·算法·llm
BeerBear11 小时前
【保姆级教程-从0开始开发MCP服务器】一、MCP学习压根没有你想象得那么难!.md
人工智能·mcp