遗传算法GA求解机器人栅格地图最短路径规划,可以自定义地图及起始点(提供MATLAB代码)

一、原理介绍

遗传算法是一种基于生物进化原理的优化算法,常用于求解复杂问题。在机器人栅格地图最短路径规划中,遗传算法可以用来寻找最优路径。

遗传算法的求解过程包括以下几个步骤:

  1. 初始化种群:随机生成一组初始解,每个解表示机器人在栅格地图上的路径。

  2. 评估适应度:根据路径的长度或者其他评价指标,计算每个解的适应度值。

  3. 选择操作:根据适应度值,选择一部分优秀的解作为父代,用于产生下一代解。

  4. 交叉操作:通过交叉操作,将父代解的某些部分进行交换和组合,生成新的解。

  5. 变异操作:对新生成的解进行变异操作,引入一定的随机性,增加解的多样性。

  6. 更新种群:将新生成的解加入到种群中,并淘汰一部分适应度较低的解。

  7. 终止条件判断:根据预设的终止条件(如达到最大迭代次数或找到满意的解),判断是否结束算法。

  8. 输出结果:输出最优解作为机器人在栅格地图上的最短路径。

二、部分代码

复制代码
close all;
clear;
clc;
% 输入数据,即栅格地图.20行20列
Grid=  [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0;
     0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0;
     0 0 1 0 0 0 1 1 1 0 0 0 0 0 0 1 0 0 0 0;
     0 0 0 0 0 0 1 1 1 0 0 0 1 1 1 1 1 0 0 0;
     0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 0 0;
     0 1 1 1 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0;
     0 1 1 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0;
     0 0 0 0 0 0 1 1 1 0 1 0 1 1 0 0 1 1 1 0;
     0 1 1 1 0 0 0 0 0 0 1 0 1 1 0 0 0 0 1 0;
     0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0;
     0 0 0 0 0 0 0 1 1 0 1 1 1 1 0 0 0 0 1 0;
     0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 0;
     0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 1 1 0;
     0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0;
     0 0 1 1 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0;
     0 0 1 1 0 0 1 1 1 0 1 0 0 0 0 0 0 0 1 0;
     0 0 0 0 0 0 1 1 1 0 1 0 0 0 1 0 0 1 1 0; 
     0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0;
     0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0;
     0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];
start_num = 18;    % 起点编号
end_num = 380;    % 终点序号
NP = 300;       % 种群数量
max_gen = 300;  % 最大进化代数
pc = 0.8;      % 交叉概率
pm = 0.2;      % 变异概率
a = 1;         % 路径长度比重
b = 8;         % 路径顺滑度比重
z = 1;         
new_pop1 = {}; % 元胞数组,存放路径
[y, x] = size(Grid);
% 起点所在列(从左到右编号1.2.3...)
start_column = mod(start_num, x) + 1; 
% 起点所在行(从上到下编号行1.2.3...)
start_row = fix(start_num / x) + 1;  %Y = fix(X) 将 X 的每个元素朝零方向四舍五入为最近的整数
% 终点所在列、行
end_column = mod(end_num, x) + 1;
end_row = fix(end_num / x) + 1;

三、部分结果

四、完整MATLAB代码

遗传算法GA求解机器人栅格地图最短路径规划,可以自定义地图及起始点(提供MATLAB代码)

点击main.m即可运行,可以自定义地图及起始点。

相关推荐
数据小爬虫@2 小时前
深入解析:使用 Python 爬虫获取苏宁商品详情
开发语言·爬虫·python
健胃消食片片片片2 小时前
Python爬虫技术:高效数据收集与深度挖掘
开发语言·爬虫·python
XuanRanDev3 小时前
【数据结构】树的基本:结点、度、高度与计算
数据结构
王老师青少年编程3 小时前
gesp(C++五级)(14)洛谷:B4071:[GESP202412 五级] 武器强化
开发语言·c++·算法·gesp·csp·信奥赛
DogDaoDao3 小时前
leetcode 面试经典 150 题:有效的括号
c++·算法·leetcode·面试··stack·有效的括号
井底哇哇4 小时前
ChatGPT是强人工智能吗?
人工智能·chatgpt
Coovally AI模型快速验证4 小时前
MMYOLO:打破单一模式限制,多模态目标检测的革命性突破!
人工智能·算法·yolo·目标检测·机器学习·计算机视觉·目标跟踪
一只小bit4 小时前
C++之初识模版
开发语言·c++
AI浩4 小时前
【面试总结】FFN(前馈神经网络)在Transformer模型中先升维再降维的原因
人工智能·深度学习·计算机视觉·transformer
王磊鑫5 小时前
C语言小项目——通讯录
c语言·开发语言