朴素贝叶斯算法基础——案例:对新闻进行分类

贝叶斯公式

朴素:假设特征与特征之间相互独立

朴素贝叶斯算法:朴素+贝叶斯

应用场景:文本分类(单词作为特征)

拉普拉斯平滑系数

Ni:F1词在C类别所有文档中出现的次数

N:所属类别C下的文档所有词出现的次数和

a:指定的系数一般为1

m:训练文档中统计出的特征词个数

不懂没关系,会用API就行!!!!!

API:

sklearn.naive_bayes.MultinomialNB(alpha = 1.0)

  • 朴素贝叶斯分类
  • alpha:拉普拉斯平滑系数

案例:

1、获取数据

2、划分数据集

3、特征工程------文本特征抽取

4、朴素贝叶斯算法的

5、模型评估

python 复制代码
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.neighbors import KNeighborsClassifier
from sklearn.model_selection import GridSearchCV
from sklearn.datasets import fetch_20newsgroups
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.naive_bayes import MultinomialNB

#用朴素贝叶斯算法对新闻进行分类
#获取数据
news = fetch_20newsgroups(subset = 'all')
#数据集划分
x_train,x_test,y_train,y_test = train_test_split(news.data,news.target)
print(x_train)
#特征工程------文本特征抽取
transfer = TfidfVectorizer()
x_train = transfer.fit_transform(x_train)
x_test = transfer.transform(x_test)

#朴素贝叶斯算法预估器流程
estimator = MultinomialNB()
estimator.fit(x_train,y_train)
#模型评估
#方法一:直接比对真实值和预测值
y_predict = estimator.predict(x_test)
print("y_predict:\n",y_predict)
print("对真实值和预测值:\n",y_test == y_predict)
#方法二:计算准确率
score = estimator.score(x_test,y_test)
print("准确值为:\n",score)
相关推荐
电子海鸥11 分钟前
迁移学习--fasttext概述
人工智能·机器学习·迁移学习
dwjf32122 分钟前
机器学习(三)-多项式线性回归
人工智能·机器学习·线性回归
风清云淡_A23 分钟前
【java基础系列】实现数字的首位交换算法
java·算法
涵涵子RUSH26 分钟前
合并K个升序链表(最优解)
算法·leetcode
爱吃西瓜的小菜鸡35 分钟前
【C语言】矩阵乘法
c语言·学习·算法
sjsjs112 小时前
【多维DP】力扣3122. 使矩阵满足条件的最少操作次数
算法·leetcode·矩阵
哲学之窗2 小时前
齐次矩阵包含平移和旋转
线性代数·算法·矩阵
Sudo_Wang2 小时前
力扣150题
算法·leetcode·职场和发展
qystca2 小时前
洛谷 P1595 信封问题 C语言dp
算法
机器学习之心2 小时前
BiTCN-BiGRU基于双向时间卷积网络结合双向门控循环单元的数据多特征分类预测(多输入单输出)
深度学习·分类·gru