朴素贝叶斯算法基础——案例:对新闻进行分类

贝叶斯公式

朴素:假设特征与特征之间相互独立

朴素贝叶斯算法:朴素+贝叶斯

应用场景:文本分类(单词作为特征)

拉普拉斯平滑系数

Ni:F1词在C类别所有文档中出现的次数

N:所属类别C下的文档所有词出现的次数和

a:指定的系数一般为1

m:训练文档中统计出的特征词个数

不懂没关系,会用API就行!!!!!

API:

sklearn.naive_bayes.MultinomialNB(alpha = 1.0)

  • 朴素贝叶斯分类
  • alpha:拉普拉斯平滑系数

案例:

1、获取数据

2、划分数据集

3、特征工程------文本特征抽取

4、朴素贝叶斯算法的

5、模型评估

python 复制代码
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.neighbors import KNeighborsClassifier
from sklearn.model_selection import GridSearchCV
from sklearn.datasets import fetch_20newsgroups
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.naive_bayes import MultinomialNB

#用朴素贝叶斯算法对新闻进行分类
#获取数据
news = fetch_20newsgroups(subset = 'all')
#数据集划分
x_train,x_test,y_train,y_test = train_test_split(news.data,news.target)
print(x_train)
#特征工程------文本特征抽取
transfer = TfidfVectorizer()
x_train = transfer.fit_transform(x_train)
x_test = transfer.transform(x_test)

#朴素贝叶斯算法预估器流程
estimator = MultinomialNB()
estimator.fit(x_train,y_train)
#模型评估
#方法一:直接比对真实值和预测值
y_predict = estimator.predict(x_test)
print("y_predict:\n",y_predict)
print("对真实值和预测值:\n",y_test == y_predict)
#方法二:计算准确率
score = estimator.score(x_test,y_test)
print("准确值为:\n",score)
相关推荐
纪元A梦7 小时前
贪心算法应用:化工反应器调度问题详解
算法·贪心算法
深圳市快瞳科技有限公司8 小时前
小场景大市场:猫狗识别算法在宠物智能设备中的应用
算法·计算机视觉·宠物
liulilittle8 小时前
OPENPPP2 —— IP标准校验和算法深度剖析:从原理到SSE2优化实现
网络·c++·网络协议·tcp/ip·算法·ip·通信
superlls10 小时前
(算法 哈希表)【LeetCode 349】两个数组的交集 思路笔记自留
java·数据结构·算法
民乐团扒谱机11 小时前
逻辑回归算法干货详解:从原理到 MATLAB 可视化实现
数学建模·matlab·分类·数据挖掘·回归·逻辑回归·代码分享
田里的水稻11 小时前
C++_队列编码实例,从末端添加对象,同时把头部的对象剔除掉,中的队列长度为设置长度NUM_OBJ
java·c++·算法
纪元A梦11 小时前
贪心算法应用:保险理赔调度问题详解
算法·贪心算法
l12345sy11 小时前
Day21_【机器学习—决策树(3)—剪枝】
决策树·机器学习·剪枝
笔触狂放11 小时前
【机器学习】综合实训(一)
人工智能·机器学习
Jayden_Ruan12 小时前
C++逆向输出一个字符串(三)
开发语言·c++·算法