朴素贝叶斯算法基础——案例:对新闻进行分类

贝叶斯公式

朴素:假设特征与特征之间相互独立

朴素贝叶斯算法:朴素+贝叶斯

应用场景:文本分类(单词作为特征)

拉普拉斯平滑系数

Ni:F1词在C类别所有文档中出现的次数

N:所属类别C下的文档所有词出现的次数和

a:指定的系数一般为1

m:训练文档中统计出的特征词个数

不懂没关系,会用API就行!!!!!

API:

sklearn.naive_bayes.MultinomialNB(alpha = 1.0)

  • 朴素贝叶斯分类
  • alpha:拉普拉斯平滑系数

案例:

1、获取数据

2、划分数据集

3、特征工程------文本特征抽取

4、朴素贝叶斯算法的

5、模型评估

python 复制代码
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.neighbors import KNeighborsClassifier
from sklearn.model_selection import GridSearchCV
from sklearn.datasets import fetch_20newsgroups
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.naive_bayes import MultinomialNB

#用朴素贝叶斯算法对新闻进行分类
#获取数据
news = fetch_20newsgroups(subset = 'all')
#数据集划分
x_train,x_test,y_train,y_test = train_test_split(news.data,news.target)
print(x_train)
#特征工程------文本特征抽取
transfer = TfidfVectorizer()
x_train = transfer.fit_transform(x_train)
x_test = transfer.transform(x_test)

#朴素贝叶斯算法预估器流程
estimator = MultinomialNB()
estimator.fit(x_train,y_train)
#模型评估
#方法一:直接比对真实值和预测值
y_predict = estimator.predict(x_test)
print("y_predict:\n",y_predict)
print("对真实值和预测值:\n",y_test == y_predict)
#方法二:计算准确率
score = estimator.score(x_test,y_test)
print("准确值为:\n",score)
相关推荐
业精于勤的牙3 小时前
浅谈:算法中的斐波那契数(二)
算法·职场和发展
江上鹤.1483 小时前
Day40 复习日
人工智能·深度学习·机器学习
不穿格子的程序员3 小时前
从零开始写算法——链表篇4:删除链表的倒数第 N 个结点 + 两两交换链表中的节点
数据结构·算法·链表
liuyao_xianhui3 小时前
寻找峰值--优选算法(二分查找法)
算法
dragoooon343 小时前
[hot100 NO.19~24]
数据结构·算法
Katecat996635 小时前
夜间收费站与道路场景多类型车辆检测与分类:基于Faster R-CNN R50 PAFPN的实现_1
分类·r语言·cnn
Tony_yitao5 小时前
15.华为OD机考 - 执行任务赚积分
数据结构·算法·华为od·algorithm
C雨后彩虹5 小时前
任务总执行时长
java·数据结构·算法·华为·面试
风筝在晴天搁浅6 小时前
代码随想录 463.岛屿的周长
算法