朴素贝叶斯算法基础——案例:对新闻进行分类

贝叶斯公式

朴素:假设特征与特征之间相互独立

朴素贝叶斯算法:朴素+贝叶斯

应用场景:文本分类(单词作为特征)

拉普拉斯平滑系数

Ni:F1词在C类别所有文档中出现的次数

N:所属类别C下的文档所有词出现的次数和

a:指定的系数一般为1

m:训练文档中统计出的特征词个数

不懂没关系,会用API就行!!!!!

API:

sklearn.naive_bayes.MultinomialNB(alpha = 1.0)

  • 朴素贝叶斯分类
  • alpha:拉普拉斯平滑系数

案例:

1、获取数据

2、划分数据集

3、特征工程------文本特征抽取

4、朴素贝叶斯算法的

5、模型评估

python 复制代码
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.neighbors import KNeighborsClassifier
from sklearn.model_selection import GridSearchCV
from sklearn.datasets import fetch_20newsgroups
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.naive_bayes import MultinomialNB

#用朴素贝叶斯算法对新闻进行分类
#获取数据
news = fetch_20newsgroups(subset = 'all')
#数据集划分
x_train,x_test,y_train,y_test = train_test_split(news.data,news.target)
print(x_train)
#特征工程------文本特征抽取
transfer = TfidfVectorizer()
x_train = transfer.fit_transform(x_train)
x_test = transfer.transform(x_test)

#朴素贝叶斯算法预估器流程
estimator = MultinomialNB()
estimator.fit(x_train,y_train)
#模型评估
#方法一:直接比对真实值和预测值
y_predict = estimator.predict(x_test)
print("y_predict:\n",y_predict)
print("对真实值和预测值:\n",y_test == y_predict)
#方法二:计算准确率
score = estimator.score(x_test,y_test)
print("准确值为:\n",score)
相关推荐
碧海银沙音频科技研究院1 分钟前
基于物奇wq7036与恒玄bes2800智能眼镜设计
arm开发·人工智能·深度学习·算法·分类
我不是QI25 分钟前
周志华《机器学习---西瓜书》三
人工智能·机器学习·ai
小白程序员成长日记1 小时前
2025.12.03 力扣每日一题
算法·leetcode·职场和发展
元亓亓亓1 小时前
LeetCode热题100--20. 有效的括号--简单
linux·算法·leetcode
熊猫_豆豆1 小时前
LeetCode 49.字母异位组合 C++解法
数据结构·算法·leetcode
我不是QI1 小时前
周志华《机器学习—西瓜书》四
人工智能·机器学习
nix.gnehc2 小时前
杂记:泛化
人工智能·机器学习
祝余Eleanor2 小时前
Day32 深入理解SHAP图
人工智能·python·机器学习
ModestCoder_2 小时前
强化学习 Policy 的 Tracking 能力全解析,以Legged_gym为例解说Policy的训练流程
人工智能·算法·自然语言处理·机器人·具身智能
小白程序员成长日记3 小时前
2025.12.02 力扣每日一题
数据结构·算法·leetcode