【代码】YOLOv8标注信息验证

此代码的功能是标注信息验证,将原图和YOLOv8标注文件(txt)放在同一个文件夹中,作为输入文件夹

程序将标注的信息还原到原图中,并将原图和标注后的图像一同保存,以便查看

两个draw_labels函数,分别是将目标区域轮廓标出来或者颜色填充

python 复制代码
import cv2
import numpy as np
import os

def read_txt_labels(txt_file):
    """
    从 txt 标注文件中读取标签
    :param txt_file: txt 标注文件路径
    :return: 标签列表
    """
    with open(txt_file, "r") as f:
      labels = []
      for line in f.readlines():
        label_data = line.strip().split(" ")
        class_id = int(label_data[0])
        # 解析边界框坐标
        coordinates = [float(x) for x in label_data[1:]]
        labels.append([class_id, coordinates])
    return labels


def draw_labels(image, labels):
  """
  在图像上绘制分割区域轮廓
  :param image: 图像
  :param labels: 标签列表
  """
  for label in labels:
    class_id, coordinates = label
    # 将坐标转换为整数并重新塑形为多边形
    points = [(int(x * image.shape[1]), int(y * image.shape[0])) for x, y in zip(coordinates[::2], coordinates[1::2])]
    # 使用多边形绘制轮廓
    cv2.polylines(image, [np.array(points)], True, (0, 0, 255), 2)  # 红色表示分割区域轮廓


# def draw_labels(image, labels):
#   """
#   在图像上绘制分割区域
#   :param image: 图像
#   :param labels: 标签列表
#   """
#   for label in labels:
#     class_id, coordinates = label
#     # 将坐标转换为整数并重新塑形为多边形
#     points = [(int(x * image.shape[1]), int(y * image.shape[0])) for x, y in zip(coordinates[::2], coordinates[1::2])]
#     # 使用多边形填充
#     cv2.fillPoly(image, [np.array(points)], (0, 255, 0))  # 绿色表示分割区域


def process_and_save_image(image_path, txt_path, output_folder):
    # 读取图像
    image = cv2.imread(image_path)
    labels = read_txt_labels(txt_path)
    # 复制原始图像以进行绘制
    image_with_labels = image.copy()
    # 绘制分割区域
    draw_labels(image_with_labels, labels)
    # 创建一个新的图像,左侧是原图,右侧是带标注的图
    combined_image = np.concatenate((image, image_with_labels), axis=1)
    # 定义输出图像路径
    base_filename = os.path.basename(image_path)
    output_image_path = os.path.join(output_folder, base_filename)
    # 保存图像
    cv2.imwrite(output_image_path, combined_image)

def main(input_folder, output_folder):
    # 确保输出文件夹存在
    if not os.path.exists(output_folder):
        os.makedirs(output_folder)
    # 获取输入文件夹中的所有图片文件
    image_files = [f for f in os.listdir(input_folder) if f.lower().endswith(('.png', '.jpg', '.jpeg'))]
    for image_file in image_files:
        # 构建图像和标注文件的路径
        image_path = os.path.join(input_folder, image_file)
        txt_file = os.path.splitext(image_path)[0] + '.txt'
        # 检查标注文件是否存在
        if os.path.exists(txt_file):
            process_and_save_image(image_path, txt_file, output_folder)
        else:
            print(f"标注文件 {txt_file} 不存在,跳过图像 {image_file}")

if __name__ == "__main__":
    input_folder_path = 'D:\Desktop\images'  # 替换为实际的输入文件夹路径
    output_folder_path = 'D:\Desktop\images_02'  # 替换为实际的输出文件夹路径
    main(input_folder_path, output_folder_path)

示例:


相关推荐
AI-嘉文哥哥1 小时前
ADAS自动驾驶-前车碰撞预警(追尾预警、碰撞检测)系统
人工智能·深度学习·yolo·目标检测·数据分析·课程设计·qt5
Bdygsl1 小时前
数字图像处理总结 Day 3 —— 图像增强与运算
图像处理·算法
励志成为糕手1 小时前
动手学CNN:图像处理的卷积神经网络实践指南
图像处理·人工智能·深度学习·计算机视觉·cnn
棒棒的皮皮2 小时前
【OpenCV】Python图像处理之掩膜
图像处理·python·opencv·计算机视觉
a1111111111ss12 小时前
FASFFhead
yolo
FL162386312916 小时前
自动驾驶场景驾驶员注意力安全行为睡驾分心驾驶疲劳驾驶检测数据集VOC+YOLO格式5370张6类别
人工智能·yolo·自动驾驶
c#上位机20 小时前
halcon图像去噪—均值滤波
图像处理·算法·均值算法·halcon
搞科研的小刘选手1 天前
【高录取 | 快检索】2025第二届模式识别与图像分析国际学术会议(PRIA 2025)
图像处理·机器学习·模式识别·学术会议
Coding茶水间1 天前
基于深度学习的西红柿成熟度检测系统演示与介绍(YOLOv12/v11/v8/v5模型+Pyqt5界面+训练代码+数据集)
图像处理·人工智能·深度学习·yolo·目标检测·计算机视觉