添加与搜索单词 - 数据结构设计

题目链接

添加与搜索单词 - 数据结构设计

题目描述

注意点

  • addWord 中的 word 由小写英文字母组成
  • search 中的 word 由 '.' 或小写英文字母组成
  • 1 <= word.length <= 25

解答思路

  • 为了加快查询速度,可以使用字典树存储单词,基本结构是:字典树Trie是由isLast(判断当前字符是否作为单词的最后一位)和大小为26的Trie数组child(存储按相应组合到达该树后所有可能的字符子树)组成
  • 在写入字典树时,根据当前字符c对应的位置(c - 'a')找到当前单词路径是否存在树,如果不存在则新建,然后将trie[c - 'a']设置为当前树trie,重复此过程即可,注意当到达单词最后一位时,需要将当前树trie.isLast设置为true
  • 在寻找单词是否存在时,当有'.'出现,其可以代表任意字符,需要将当前树trie的26棵子树都进行判断,任意一个成功找到说明单词存在。所以使用深度优先遍历寻找单词

代码

java 复制代码
class WordDictionary {
    Trie[] root;

    public WordDictionary() {
        root = new Trie[26];
    }
    
    public void addWord(String word) {
        Trie[] trie = root;
        for (int i = 0; i < word.length(); i++) {
            int idx = word.charAt(i) - 'a';
            if (trie[idx] == null) {
                trie[idx] = new Trie();
            }
            if (i == word.length() - 1) {
                trie[idx].isLast = true;
            }
            trie = trie[idx].child;
        }
    }
    
    public boolean search(String word) {
        return dfs(root, word, 0);
    }

    public boolean dfs(Trie[] trie, String word, int loc) {
        char c = word.charAt(loc);
        if (c != '.') {
            int idx = c - 'a';
            // 字典树中无该字符
            if (trie[idx] == null) {
                return false;
            }
            // 判断字典树中该字符是否作为单词末尾
            if (loc == word.length() - 1) {
                return trie[idx].isLast;
            }
            return dfs(trie[idx].child, word, loc + 1);
        }
        // '.'可以代表任何字符
        for (int i = 0; i < 26; i++) {
            // 字典树中无该字符
            if (trie[i] == null) {
                continue;
            }
            boolean b = false;
            if (loc == word.length() - 1) {
                // 判断字典树中该字符是否作为单词末尾
                b = trie[i].isLast;
            } else {
                // 继续深搜寻找单词后面的字符
                b = dfs(trie[i].child, word, loc + 1);
            }
            // 满足一种情况就成功
            if (b) {
                return true;
            }
        }
        return false;
    }
}

class Trie {
    boolean isLast;
    Trie[] child;
    
    public Trie() {
        isLast = false;
        child = new Trie[26];
    }
}

/**
 * Your WordDictionary object will be instantiated and called as such:
 * WordDictionary obj = new WordDictionary();
 * obj.addWord(word);
 * boolean param_2 = obj.search(word);
 */

关键点

  • 字典树的构造过程
  • 深度优先遍历的思想
相关推荐
DoraBigHead37 分钟前
小哆啦解题记——异位词界的社交网络
算法
麦兜*41 分钟前
Spring Boot 企业级动态权限全栈深度解决方案,设计思路,代码分析
java·spring boot·后端·spring·spring cloud·性能优化·springcloud
木头左2 小时前
逻辑回归的Python实现与优化
python·算法·逻辑回归
ruan1145142 小时前
MySQL4种隔离级别
java·开发语言·mysql
Hellyc6 小时前
基于模板设计模式开发优惠券推送功能以及对过期优惠卷进行定时清理
java·数据库·设计模式·rocketmq
lifallen6 小时前
Paimon LSM Tree Compaction 策略
java·大数据·数据结构·数据库·算法·lsm-tree
hdsoft_huge6 小时前
SpringBoot 与 JPA 整合全解析:架构优势、应用场景、集成指南与最佳实践
java·spring boot·架构
百锦再7 小时前
详细解析 .NET 依赖注入的三种生命周期模式
java·开发语言·.net·di·注入·模式·依赖
程序员的世界你不懂7 小时前
基于Java+Maven+Testng+Selenium+Log4j+Allure+Jenkins搭建一个WebUI自动化框架(2)对框架加入业务逻辑层
java·selenium·maven
web_Hsir8 小时前
vue3.2 前端动态分页算法
前端·算法