数据仓库的两种建模方法

一, 范式建模

特点 : 自上而下的架构, 原子数据的数仓EDW,不是多维的,需要通过汇总建设成多维格式的数据集市层

优点:易于维护,高度集成

劣势:结构死板,部署周期长

条件;

1.每个属性的值唯一,不具多义性

2.每个非主属性必须完全依赖于整个主键,而非主键的一部分

3.每个非主属性不能依赖于其他关系中的属性

Inmon 理论下结构是:ODS,EDW,和DM 也就是贴源层,主题模型层,共性加工层以及集市层,

(1) ODS(贴源层):即这里存放的数据与原系统保持一致,将采集公司所有的系统产生的数据以及外部数据(包括合作数据以及爬虫获得的数据),将所采集的数据汇总到一起,供EDW和DM使用;

(2) EDW:这一层分为两个,即ADM(共性加工层)和FDM(主题模型层)。其中FDM将从ODS层不同系统不同表的字段进行分类,同一主题的字段都归为一类,目前流行的十大主题;ADM是加工一些共性的指标,指标从ODS或者FDM的字段加工来,这层主要供集市层使用;

(3) DM:数据集市层,这一层是将业务部门所关注的指标进行汇总,形成的数据,不同的业务部门可以形成不同的集市,具体情况可以视情况而定;集市层的架构可以细分为:基础层、汇总层和分析层

这样的层次结构,虽然层次很清晰,但是如果越靠近底层数据出现问题,那么就会越影响到后面的;同时时间上做不到实时更新,一边都是T+1,或者越到后面时效性都可能是T+2/3的情况。因此当我们考虑到我们的应用的场景是否需要考虑时效性的时候,我们也要做出相应的调整。

二,维度建模

特点: 自下而上, 通过ODS层数据,利用维度建模方法建设一致维度的数据集市,通过一致性维度可以将数据集市联系在一起,构成数仓

优点:构建迅速,最快的看到投资回报率,敏捷灵活,

缺点:作为企业资源不太好维护,结构复杂,数据集市集成困难

一般常规的数据仓库层级结构可分为:ods、dw(默认为汇总数据层,也可在细分为dwd(明细)与dw(汇总)两层)、dm共三层:

ods层:称为接口层或近源数据层,表结构与源系统表结构高度相似,通常在ods层主要会做字段的筛选,枚举值转换,编码统一,异常&缺失数据处理等操作。

dw层:称为中间层,按主题建模(域->主题)的明细数据层,数据粒度与ods层一致。

dm层:称为数据集市层,集市层是按照业务主题、分主题构建出来的、面向特定部门或人员的数据集合

当下的数据仓库模型架构设计中,dw层通常会采用范式建模,并且可以根据实际情况允许存在一些冗余。dm层通常会采用维度建模,因为采用维度建模构建出来的数据模型更加符合普通人的认知、易于被普通人所理解,从而有利于数据的推广使用。

相关推荐
geneculture1 天前
融智学体系图谱(精确对应版)
大数据·人工智能·学习·融智学的重要应用·信智序位
有味道的男人1 天前
国内电商 API 深度赋能:从选品、库存到履约,重构电商运营效率新范式
大数据·重构
程砚成1 天前
美容行业的未来:当科技照进美与健康
大数据·人工智能
TG:@yunlaoda360 云老大1 天前
腾讯云国际站代理商TEFP有什么优势呢?
大数据·云计算·腾讯云
LaughingZhu1 天前
Product Hunt 每日热榜 | 2025-12-17
大数据·人工智能·经验分享·搜索引擎·产品运营
小北方城市网1 天前
鸿蒙6.0:AI与智能体框架(HMAF),重塑操作系统未来的核心密码
大数据·网络·人工智能·microsoft·ai·智能手机
又是努力搬砖的一年1 天前
elasticsearch修改字段类型
android·大数据·elasticsearch
六行神算API-天璇1 天前
数字人“个性化”背后的玄机:大模型微调与RAG实战解析
大数据·人工智能
在职工程博士1 天前
在职博士-南京邮电大学申请考核制博士招生实施细则(信息通信、信息管理工程方向)
大数据·数据库·嵌入式硬件·物联网·硬件工程·数据库开发
Deepoch1 天前
低幻觉AI:重塑科研与教育领域的可信智能新范式
大数据·人工智能·机器学习·机器人·具身模型·deepoc·低幻觉ai