从相机空间到像素空间的投影和反投影原理和代码

目录

从相机空间到像素空间的投影

效果

​编辑

公式

​编辑

代码

像素空间到相机空间的反投影


记录一下从相机空间到像素空间的投影(3D-->2D)和像素空间到相机空间的反投影(2D-->3D)。

推荐blog:SLAM入门之视觉里程计(2):相机模型(内参数,外参数) - Brook_icv - 博客园 (cnblogs.com)

从相机空间到像素空间的投影

主要是估计出物体相对相机的位姿之后,把物体投影到2D像素平面看看mask,想看看根据marker的位姿传播的误差大不大。即看看投影误差。

效果

还是存在一些误差

公式

代码

我这里的代码是从物体坐标系--》相机坐标系--》像素坐标系

复制代码
def project3Dto2D(points_local, center_local, pose, K, height, width):
    relative_points = points_local - center_local             # (0,0,0), 物体在物体坐标系下的点云的坐标
    homogeneous_points = np.ones((4,relative_points.shape[0]))
    homogeneous_points[:3,:] = relative_points.transpose()

    camera_points = np.matmul(pose, homogeneous_points)  # 物体在cam坐标系下的点云的坐标

    image_points = np.matmul(K, camera_points[:3,:]) # 相机坐标系下的点云坐标投影到图像平面

    assert np.min(image_points[2]) > 0

    image_points[0] = image_points[0]/image_points[2] # 将投影后的图像坐标除以深度,得到归一化坐标。
    image_points[1] = image_points[1]/image_points[2]

    pixel_points = np.round(image_points[:2,:]) # 对归一化坐标取整,得到像素坐标。

    mask1 = pixel_points[0,:] > -1            # 根据像素坐标的范围进行剪裁,即将超出图像范围的点云剔除。
    mask2 = pixel_points[1,:] > -1
    mask3 = pixel_points[0,:] < width
    mask4 = pixel_points[1,:] < height

    mask = mask1&mask2&mask3&mask4
    selected_index = np.where(mask)
    pixel_points = np.take(pixel_points, selected_index[0], axis=1)
    depth = np.take(image_points[2,:], selected_index[0])
    
    return pixel_points.astype(int), depth

像素空间到相机空间的反投影

主要是根据yolov8检测的mask(u,v),获取对应的深度值z,根据uvz求解出物体的在相机坐标下的3D坐标(XYZ)

复制代码
cx, cy, fx, fy = 323, 238, 616, 616
x = (u - cx) / fx
y = (v - cy) / fy
x = x * z
y = y * z
相关推荐
qq_4162764211 小时前
LOFAR物理频谱特征提取及实现
人工智能
余俊晖12 小时前
如何构造一个文档解析的多模态大模型?MinerU2.5架构、数据、训练方法
人工智能·文档解析
Akamai中国13 小时前
Linebreak赋能实时化企业转型:专业系统集成商携手Akamai以实时智能革新企业运营
人工智能·云计算·云服务
LiJieNiub14 小时前
读懂目标检测:从基础概念到主流算法
人工智能·计算机视觉·目标跟踪
weixin_5195357714 小时前
从ChatGPT到新质生产力:一份数据驱动的AI研究方向指南
人工智能·深度学习·机器学习·ai·chatgpt·数据分析·aigc
爱喝白开水a15 小时前
LangChain 基础系列之 Prompt 工程详解:从设计原理到实战模板_langchain prompt
开发语言·数据库·人工智能·python·langchain·prompt·知识图谱
takashi_void15 小时前
如何在本地部署大语言模型(Windows,Mac,Linux)三系统教程
linux·人工智能·windows·macos·语言模型·nlp
OpenCSG15 小时前
【活动预告】2025斗拱开发者大会,共探支付与AI未来
人工智能·ai·开源·大模型·支付安全
生命是有光的15 小时前
【深度学习】神经网络基础
人工智能·深度学习·神经网络
数字供应链安全产品选型15 小时前
国家级!悬镜安全入选两项“网络安全国家标准应用实践案例”
人工智能·安全·web安全